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Jens Schröder1, Thomas Rohdenburg2, Volker Hohmann1, Stephan D. Ewert1

1 University of Oldenburg, Institute of Physics, Medical Physics, Germany,

Email: jens.schroeder@uni-oldenburg.de; stephan.ewert@uni-oldenburg.de
2 Fraunhofer Institute for Digital Media Technology, 26129 Oldenburg, Germany

Introduction
In daily communication, speech intelligibility depends on
the acoustic surrounding or acoustic situation. Particu-
larly for hearing impaired persons, speech understanding
is often problematic if speech is distorted by (room)
reverb, noise or competing talkers. Acoustic situations
are characterized by different dominating types of distor-
tion. Hearing aids might provide appropriate algorithms
to enhance speech intelligibility in the different acoustic
situations. A robust and fast automatic classification
of the acoustic situation should therefore select the
appropriate hearing aid algorithm without requiring an
action of the hearing aid wearer. This study is concerned
with the automatic estimation of the reverberation time
(T60) in natural situations and with unknown excitation
signal. Acoustic test situations were generated by
convolving speech signals with artificial and real room
impulse responses with T60 times ranging from 0.05
to 4 s. Features derived from the cepstral mean, the
autocorrelation function and from the distribution of
modulation energy were used to blindly estimate different
reverb times.

Impulse Response Model
In natural environments sound is often received as a
superposition of direct and reflected sound from walls or
objects in a room. Direct, early reflexions arrive first at
the ear and after multiple reflexions and superpositions of
reflexions from many objects they are diffuse and called
reverberation. The level of reflexions in a room impulse
response decreases due to attenuation effects and scatter-
ing. This decay is often assumed to be nearly exponential
([1],[6]). Thus, a reverberant impulse response can be
approximated by an exponentially decaying part and if
measurement noise or background noise occured by a
constant part [1]:

h(t) = Aexpe
−t/τn1(t) + Anoisen2(t), (1)

where Aexp und Anoise are scalar, τ is the decay param-
eter in seconds, t is the time in seconds and n1(t) and
n2(t) present two independent noise processes.
A common measure for reverberation is the time until
the impulse response has decreased by 60 dB. In (1), the
reverberation time, T60, can be calculated directly from
the decay parameter τ :

T60 = − ln(10−3) · τ ≈ 6.908 τ . (2)

To calculate the T60 time from a measured impulse
response different solutions exist. A procedure suggested

in [1] is to fit the power by a least square fit. From
equation (1) the instantaneous power can be derived as

a(t) =
√

A2
expe

−2t/τ + A2
noise. (3)

The parameters Aexp, τ and Anoise are evaluated by a
least square fit of the form

min

∫
[as(t) − ys(t)]

2
dt (4)

where s = 0.5 is a scaling factor to improve the results
[1]. The T60 time was then calculated as stated in (2).

Blind Estimation Procedures
The goal of this study is to estimate the T60 time from
a reverberated speech sample without having explicit
information about neither the impulse response nor the
underlying clean speech.
Three different methods are used in the following and
their results are compared.

Cepstral Mean
To estimate the impulse response from an unknown
reverberated signal there exists the theory of ”blind
homomorphic deconvolution” [3], [4], [5]. Here a rever-
berated speech signal is assumed as:

sir(t) = s(t) ∗ h(t), (5)

where ∗ denotes the convolution product, s(t) clean
speech and h(t) the impulse response. A Fourier trans-
formation turns the convolution into a multiplication.
The logarithm transforms this product into a sum. A
further inverse Fourier transformation converts the sum
into the cepstral domain where the additivity is preserved
(see figure 1). If it is assumed that the cepstrum

s(t) ∗ h(t)
F
→ S(f) ·H(f)

log
→ Ŝ(f) + Ĥ(f)

F
−1

→ ŝ(q) + ĥ(q)

Figure 1: Calculation of the cepstrum from a convoluted
input signal

of the clean speech is nearly uncorrelated in adjacent
windows, averaging over a few cepstra estimates the
mean cepstrum of the impulse response. By inversing
h(t) can be derived.
To keep the inverse cepstrum stable and causal, only the
minimum phase part of the deconvolved impulse response
is taken [3]. The whole deconvolution scheme by cepstral
mean is shown in figure 2. The T60 time can then
be estimated from the resulting impulse response by the
above mentioned least square fit.
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Figure 2: Blind deconvolution of reverberated speech by
cepstral mean estimation of the minimum phase part of the
impulse response

Autocorrelation
The autocorrelation function Rsir,sir(t) of a reverberant
signal sir(t) is the convolution product of the autocorre-
lation functions of the underlying clean speech s(t) and
the room impulse response h(t).

Rsir,sir(t) = s(t) ∗ h(t) ∗ s(−t) ∗ h(−t)

= Rs,s(t) ∗ Rh,h(t). (6)

If the clean speech is considered to have a peaky auto-
correlation function then the following approximation is
possible:

Rsir,sir(t) ≈ Rh,h(t). (7)

For an exponential function, the autocorrelation function
for positive times has the same exponential decay pa-
rameter τ . Thus we assume the autocorrelation function
of the reverberated signal to decay like the underlying
impulse response. To reduce estimation errors averaging
over overlapping windows was performed. From the
averaged autocorrelation function the T60 time was
estimated due to equation (4).

Speech to Reverberation modulation en-
ergy ratio (SRMR)
Typically, clean speech shows the strongest modula-
tion energy at a modulation frequency of about 4 Hz.
The distribution of modulation energy shifts to higher
modulation frequencies for reverberated speech as a
consequence of the whitening effect by the impulse
response which is considered to be a damped gaussian
white noise. The higher the reverberation time, the
more modulation energy occurs at high modulation
frequencies. Thus [7] suggested a comparison of energies
at high and low modulation frequencies. Here, the
modulation spectrogram was seperated into low and
high modulation frequency regions and the ratio of the
respective energies was calculated. This ratio is called
SRMR (Speech to Reverberation Modulation energy
Ratio).
In comparision to [7], the weighting of the high and
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Figure 3: Algorithm for the estimation of SRMR

low modulation frequency regions was changed. Low
modulation frequencies were defined to be smaller than
28.9 Hz or smaller than 10% of the corresponding
bandwidth of the auditory filter.

Stimuli and Methods
To analyse the three estimation methods, clean speech
material of four speaker sets sampled at 16 kHz was
used: Two male, German speakers, one female, German
speaker and a set of female, English speakers.
The clean speech material was reverberated by convolu-
tion with room impulse responses.
To characterize the impulse responses, the T60 times
were estimated from the impulse responses using the
method described in (4) and are referred to as real T60
times in the following.
For the first test setup, referred to as artifical impulse
response setup (artificial IR setup), impulse responses
were generated by source imaging [2] to achieve a wide
range of T60 times with controlable spectral (white)
properties. For these impulse responses a rectangular
room was simulated and its size and reflexion coefficients
were adjusted to produce T60 times ranging from 50 ms
to 4 s, increasing at a factor of two. The sound source
and the receiver were distributed randomly in the room
and the positions differed between the impulse responses.
Independent of the T60 time the length of each impulse
response was 2 s with 16 kHz sampling frequency.
All reverberant speech samples were derived from the
same underlying clean speech. In this paper, the results
for one of the male German speakers are shown.
The second test setup, called real impulse response
setup (real IR setup), consisted of real impulse responses
selected from a commercial impulse response library.
Three groups of T60 times were defined: a ”dry” one
(0.16 - 0.36 s) with a mean T60 = 0.3 s, a medium
reverberated one (0.72 - 1.02 s) with a mean T60 =
0.9 s and a reverberant one (1.71 - 1.98 s) with a mean
T60 = 1.9 s. Each group consisted of four impulse
responses. Each of the four impulse responses of a group
are convolved with different speech material from one of
the four speaker sets.
To test all three features, an estimation of the T60 time
respectively the SRMR was done every 0.5 s for a total
time of 100 seconds for the artificial IR setup and 40
seconds for each speaker/impulse response of a T60 group
for the real IR setup.
For the cepstral mean and the autocorrelation feature
the window lengths were 0.05 s, 0.2 s, 0.5 s, 1 s, 2 s,
3 s, and 4 s. The overlap between two windows was
7/8 and the averaging time 5 times the window length
(=̂ 33 windows). The first 6.3 ms (=̂ 100 time samples at
16 kHz sampling frequency) of the deconvolved impulse
responses were skipped for the fitting.
The window length for the SRMR feature was 1 s.

Results

Cepstral Mean
The means of 200 T60-time estimates for the artificial
IR setup are plotted in Fig. 4 (solid lines) as a function
of the analysis window duration for three different real
T60 times indicated by the dotted lines. The T60-
time estimates depend on the analysis window duration,
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Figure 4: Cepstral mean: Means and standard deviations
of 200 estimated T60 times per window length and impulse
response of the artificial IR set up (solid lines). The dotted
lines of same color represent the real T60 time.

starting at small values for short window durations and
asymptoting against the real T60 times with increasing
window duration. The T60-time curves flatten off at a
window duration corresponding to about two times real
T60 time. Since the estimates depend on the window
duration, the proper window for a good T60-time esti-
mation has to be chosen blindly. To do so, the algorithm
suggested here successively calculates T60-time estimates
for increasing analysis window durations. Following the
slope analysis given above, the validity of the estimates
is judged blindly by monitoring the differences of the
T60-time estimates derived for two succesive analysis
window durations. If the slope calculated from the two
last estimates is smaller than an empirically adjusted
criterion of 0.1, the last estimate is considered to be valid.
A second criterion to judge the validity of the estimate is
to monitor the ratio between the energy of the fitted noise
and the energy in the fittet exponential decay calculated
over the duration of the current T60-time estimate:

∑T60
A2

noise∑T60
(Aexp exp(−τt))

2
=

N

S
. (8)

Again, an empirically adjusted criterion of N
S < 0.25 has

to be met in order to judge the estimate as valid. If
both criterions are met, a valid T60-time estimate was
calculated by the algorithm.
The means of the valid T60-time estimates are plotted
in Fig. 5 as a function of the real T60 times. The left
panel shows the results for the artificial IR setup and
the right panel for the real IR setup. The numbers
indicate the percentage of T60-time estimates which
satisfied both validity criterions. Apparently, a lower
limit for the estimated T60 times exists at about 200 ms
for small real T60 times. For longer real T60 times,
the estimates match very well. The number of valid
T60 times decreases since longer real T60 times need
longer window duration for a proper estimation. The
calculation time for a valid estimate is about ten times
the real T60 time: the best window duration is about
two times the real T60 time and the averaging time is
five times the window length. Although the computation
time for the very accurate T60-time estimate appears
quite long, the successive prolonging of the window
duration in the algorithm allows an early estimation of
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Figure 5: Cepstral mean: Means and standard deviations
of valid T60-time estimates. The numbers indicate the
percentage of the valid estimates in relation to all estimates.
Left panel: artificial IR set up, 200 estimations per impulse
response. Right panel: real IR set up, 320 estimations per
impulse response group

the lowest possible value for the currently observed T60
time: The longer the actual window duration is, the
longer the T60 time will be.

Autocorrelation
For the autocorrelation feature, the same sound material
and paramters as for the cepstral mean feature were used
(see above).
The means of 200 T60-time estimates per window and
impulse response of the articicial IR setup are plotted
in Figure 6, comparable to Figure 4. Comparable to
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Figure 6: Autocorrelation: The estimated T60 times
as means with standard deviations of 200 estimations per
window and impulse response of the articicial IR setup (solid
lines). The real T60 times are indicated as dotted lines of the
same color.

the cepstral mean feature, the estimated T60 times of
the autocorrelation feature asymptote against the real
T60, though the deviations are much higher here than
in case of the cepstral mean feature. The prolonging
of the analysis window duration was again used and
valid estimates were derived when the same slope and
N
S criteria as in case of the cepstral mean feature were
met. The results for the valid T60-time estimates are
shown in Figure 7. The results are similar to those
from the cepstral mean. Again, there is a lower limit at
about 200 ms for the T60-time estimates. Above 200 ms
the means of estimated T60 times are matching the real
ones well, though the deviations are larger than those of
cepstral mean. The number of valid T60 times decreases
heavily for all impulse responses.
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Figure 7: Autocorrelation: Means and standard deviations
of valid T60-time estimates for the different impulse
responses. The numbers show the percentage of valid T60-
time estimates in relation to all estimates. Left panel:
artificial IR setup, 200 estimations per impulse response; right
panel: real IR setup, 320 estimations per impulse response
group.

Speech to Reverberation modulation en-
ergy ratio (SRMR)
In Figure 8 the means and standard deviations of SRMRs
are plotted.
The left panel shows the results for the artificial IR setup.
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Figure 8: Means and standard deviations of calculated
SRMRs per impulse response over the real T60 times. Left
panel: artificial IR setup, 200 estimations per impulse
response; right panel: real IR setup, 320 estimations per
impulse response group.

It is obvious that the SRMRs between 50 and 400 ms
are nearly equal and that SRMRs decrease beyond about
400 ms real T60 time. The large standard deviations
indicate that even a meaningful classification in rough
T60-time categories would fail without averaging over a
large number of SRMRs.

Conclusions
Three different methods for the estimation of the rever-
beration time T60 were presented. It was shown that
for the cepstral mean and the autocorrelation feature
an estimation of the T60 time via the N

S and slope
criteria is possible with very good accuracy above about
200 ms. The lower limit of estimated T60 times at
about 200 ms is most likely related to the statistical
features of speech. Both methods assume that the speech
signal is statistically independent in successive time
windows which is not the case. Shorter T60 times could
be only estimated with a input signal of significantly

shorter correlation duration like white Gaussian noise.
Another observation is that the number of valid T60-time
estimates drops towards longer real T60 times with the
current choice of the longest analysis window duration
of 4 s, particularly for the autocorrelation feature. The
use of even longer analysis window duration seems not
feasible with the practical application in mind. The
calculation times that where achieved are about 10 times
the T60 time (window length = 2 · T60, averaging time
= 5· window length). Nevertheless an early classification
into short and long T60 times is possible by monitoring
the active window duration in the algortihm: The larger
the active window (even if the T60 time is not valid) the
longer the T60 time.
For the SRMR feature, the reliable results from [7] could
not be reproduced. By averaging over some SRMRs or
modulation spectrograms this feature might, however,
be usefull in combination with the cepstral mean or
autocorrelation feature.
In the next step all three features are combined in a
classifier with a gaussian mixture model (GMM) for
robustness.
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