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Abstract—This paper presents the evaluation of full 3D sound
source localization systems for real world living environments. We
tested several well-established algorithms. The Generalized Cross
Correlation Phase Transform (GCC-PHAT) and Adaptive Eigen-
value Decomposition Phase Transform (AED-PHAT) algorithms
were implemented as Time Delay of Arrival (TDOA) estimators.
For the localization itself a three dimensional acoustic map was
computed using the Global Coherence Field (GCF) as well as the
modified Least Squares (LS) algorithm called Least Median of
Squares (LMS). The combinations of these techniques are applied
to different microphone array configurations composed of two
fundamental microphone arrays. These fundamental arrays are
a set of ceiling-mounted sensors with large distances and a small
spherical array. Finally, a Voice Activity Detector (VAD) was
applied in order to avoid false localization estimations during
speech pauses. For evaluation we recorded a database of speech
signals in a natural living environment. The results show that
the combination of ambient microphone arrays with modern
localization algorithms are able to locate people in a room in
all three dimensions. However, the localization is not perfectly
accurate and an error up to 0.4 m has to be tolerated.

I. INTRODUCTION

Knowing the location of a sound source gives great benefit
to many applications, e.g. for (multi talker) video conference
systems. In this case the knowledge of the current speaker’s
position offers the possibility to use further speech enhance-
ment techniques like beamforming [1].

In our application we are interested in sound source lo-
calization in an Ambient Assisted Living (AAL) apartment.
Therefore, the mounted microphones should be as invisible
as possible. While the ceiling attached sensors could be
concealed completely, hiding spherical arrays is a little more
difficult. Our considered solution for that problem is to build a
spherical array within a (designer) lamp. The advantages of the
combination are that the lamp hides the installed microphones
and a very nice indirect light would be created.

The apartment in which the implemented technologies were
tested and used is a part of the ”Lower Saxony Research
Network Design of Environments for Ageing” [2], [3]. There
are different applications considered within this project which
are based on an accurate estimation of the position of the
speaker. Some of these are controlling

• a beamformer,
• a multichannel playback system for spatial presentation

of sounds,
• other devices, e.g. video control systems or lights.

II. USED ALGORITHMS

For our evaluation we only used well-known and established
techniques. The algorithms are based on estimating either
cross-correlation (CC) or the Time Delay of Arrival (TDOA)
τ̂ between two microphones. This can be done by using the
Generalized Cross Correlation (GCC, [4]) and the Adaptive
Eigenvalue Decomposition (AED, [5]–[7]) algorithms. The
AED is used to estimate the eigenvector corresponding to the
lowest eigenvalue of the combined signals of a microphone
pair. It has been shown in [5] that this eigenvector contains
a rough estimate of the impulse responses from the source
to the two microphones. With an appropriate initialization
of the AED [8] and a minimum search, the delay between
the direct paths of the microphone signals can be estimated.
Generally this is done in the frequency domain. For both
TDOA algorithms, GCC and AED, a spectral weigthing of
the cross-spectral density between the inputs Sx0x1 [k] is ap-
plied, according to the well-known Phase-Transform (PHAT)
weighting.

The position of the speaker was estimated by employing
an acoustic map. Acoustic maps are functions, defined over
a sampled space of potential solutions that represent the
plausibility that a source is present at a given point p [9].
In this contribution we compare two localization algorithms
based on acoustic maps, the Least Median of Squares (LMS)
which is a more robust extension of the well-known Least
Squares (LS) approach [9], [10] and the Global Coherence
Field GCF [9], [11]. Both algorithms sample the room into a
discrete grid with a spacing of 0.1 m in each direction x, y
and z. While LMS uses the estimated TDOA τ̂ only, the GCF
takes advantage of the whole cross correlation function which
means more computed information will be used.

For the TDOA estimation and the localization algorithms the
following four combinations were tested: GCC-PHAT/LMS,
GCC-PHAT/GCF, AED-PHAT/LMS and AED-PHAT/GCF.



Fig. 1. Schematic view showing the arrangement of the ceiling-mounted
microphones (pluses) and spherical arrays (shaded spheres, see also Fig. 2)
in the AAL-laboratory at Offis Institute of Information Technology [3]. The
diamonds, squares and circles as well as the upward- and downward-pointing
triangles represent five different speaker positions (filled marker) and their
estimations (unfilled marker) by using the right spherical array. The direction
from this array to each true speaker-position is plotted by dashed lines.
We tested three sitting-positions (circles, upward- and downward-pointing
triangles) as well as two standing-positions (diamonds and squares).

TABLE I
USED ARRAY COMBINATIONS WITH C = CEILING ARRAY AND Si =

SPHERICAL ARRAY i

Combination Arrays used Number of possible
Number microphone pairs
1 S2 28
2 S1 & S2 120
3 C 28

Typically speech pauses reduce the robustness of localiza-
tion algorithms for real-world acoustic scenarios. Therefore, a
Voice Activity Detection (VAD) based on [12] was applied.

III. EVALUATION

A. Acoustic scenario and microphone arrays

For this evaluation (compare Fig. 1) we used two different
kinds of microphone arrays. The first array consisted of eight
capacitor microphones which were mounted at the ceiling
of the living room. The minimum distance between a pair
of microphones in this array was dmin = 0.78 m while
the maximum distance measured dmax = 3.33 m. As a
second and third array we used two self-build spherical arrays
which were made from styrofoam spheres with eight low-
priced electret capsule microphones. Since they were placed
uniformly distributed on the sphere’s surface the microphones
would span a cube with equal edge lengths (Fig. 2). The
radius of those spheres is r = 0.075 m. While the first
microphone array was mounted into the room’s ceiling (height
at sz = 2.7m) both spherical arrays were placed at a height
of sz = 2.1 m.

Table I shows the microphone array combinations we tested
with the implemented algorithms.

Two facts are noteworthy:

Fig. 2. Schematic view of a spherical array that contains 8 microphones. The
microphones are placed uniformly distributed on the sphere’s surface which
means connecting all neighboring microphones would span a cube with equal
edge lengths of 0.087 m.

• We used low-priced microphones that had not been
calibrated according to frequency or level in order to have
a practical and realistic constraint for AAL applications.

• We did not measured the spatial positions of the micro-
phones and arrays accurate to a millimetre.

Finally, our configuration has 24 microphone channels
which are recorded simultaneously at a sampling frequency
of fs = 48 kHz and a resolution of 16 bits.

The different speaker positions (three sitting- and two
standing-positions), the microphone positions, and the position
of the sphere-arrays that we tested are shown in Fig. 1.

B. Methodology

All tested algorithms were implemented in a MATLAB block
processing framework. The size of the blocks was 12.5 ms
which results in a length of 1024 samples at the given sampling
frequency of fs = 48 kHz. Before calculating anything all
data were filtered through a third order Butterworth high-pass
filter with a cut-off frequency of fc = 100 Hz. This filter was
supposed to avoid estimation errors caused by foot fall sounds
which may temporarily occur.

Originally the test sounds were used to train a speech
recognition system. Therefore, speech pauses where intro-
duced deliberately, which are responsible for a high amount
of estimation errors. These are caused by a computer rack
outside the room, which was localized in the absence of
speech. To prevent this a combination of a voice activity
detector (VAD) and a moving root mean square (MRMS)
threshold decision method was implemented. As VAD we used
the technique proposed by [12] which performs quite well
in noisy environments. However, the VAD can produce false
alarms in quiet situations, so we used the MRMS decision
method as a second step. Only if the MRMS is greater than a
predefined threshold and if the VAD signalizes ”speech” on
all microphone channels, acoustical activity will be identified
and the current data block will be used for localization.

The calculation of the GCC/AED algorithm starts instantly
after acoustical activity is detected. However, the position
estimation through GCF/LMS starts with a little time-shift
to GCC/AED. The time shift is ts = 0.1 s which equates



to the smoothing time of the cross spectrum calculation for
the GCC. This approach takes advantages of the fact that the
TDOA estimation needs a few blocks of processing to adapt.
The estimated positions were not smoothed over time because
speaker tracking is not a topic in this article. We also tried
to improve the time delay estimation for the spherical arrays
by incorporating head models [13]. However, no significant
advantages justifying the higher computational complexity
could be found.

C. Determining the hit rate

If we estimate a position p̂(n) = [x̂(n), ŷ(n), ẑ(n)] in the
three-dimensional space at a time step n, the error e(n) of this
estimation is given as

e(n) = ‖p̂(n)− p‖ , with the true source position p. (1)

That means the error e(n) stands for the spatial distance
between true position and estimation. Further we defined a
percentage-correct measure depending on the radius rcorr of
a lock-in range sphere around the true position. If p̂(n) lies
inside this sphere the estimation is identified as ”correct”:

Pcorr(n) =
{

1, if e(n) < rcorr

0, else (2)

Finally, the hit rate of a full trial can be calculated as

Pcorr,trial =
N∑

n=1

Pcorr(n) , with number of time steps N.

(3)
We evaluated the arrays and algorithms with different lock-

in range radiuses in the range of rcorr = 0 . . . 1 m.

IV. RESULTS

An overview of all results by using a lock-in range radius
of rcorr = 0.4 m is given in Fig. 4. The worst hit rates
were produced by using only one spherical array. This could
be explained by the fact that the mapped area of a sound
source is not circular but long drawn-out in the acoustical
map [11]. Moreover, it holds that a smaller distance between
the microphone pairs leads to extended mapped areas. Thus,
finding the correct position is more difficult if the mapped area
is very long drawn-out. However, if you look at Fig. 1, it is
clear that only the estimation of the exact position fails when
using only one spherical array whereas the estimation of the
direction is quite good.

GCC-PHAT/LMS seems to be the worst algorithm com-
bination with the largest variances. A reason for that could
be that the LMS only uses the estimated TDOA τ̂ between
a pair of microphones, but not the whole cross-correlation
data like the GCF does. Furthermore, if the spatial distance
between the used pair of microphones is large, which is the
case when using both spheres or the ceiling array, AED-
PHAT might produce better TDOA estimations than GCC-
PHAT. This explains why the degradation of GCC-PHAT/LMS

0 0.2 0.4 0.6 0.8 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Radius r
corr

 / m →

Lo
ca

lis
at

io
n 

ra
te

 →

 

 

one sphere, GCC−PHAT/GCF

both Spheres, GCC−PHAT/GCF

Ceiling, AED−PHAT/GCF

Fig. 3. Localization rates in percent depending on the lock-in range radius
rcorr and plotted for the three best array-algorithm-combinations which are
identified in Fig. 4, position 6. Curves are calculated by using the data from
all speakers and all speaker positions.

is significant compared to the other algorithm combinations
when using both spheres or the ceiling array, but not when
using only one spherical array.

Using both spherical arrays causes the best of all hit rates
for all the algorithm combinations, which is not surprising
because in this case 16 microphones instead of 8 microphones
were used. But also the ceiling-mounted microphones alone
can produce quite good estimation results by using AED-
PHAT/GCF.

Furthermore, Fig. 4 shows, that LMS does not enhance
the hit rates compared to GCF. Since LMS needs more
processing power than GCF, we have selected GCF as the
better localization technique for our microphone array setups
at the AAL-laboratory.

Moreover, we haven chosen the three best array-algorithm
combinations and plotted their localization rates depending
on the lock-in range radiuses rcorr (Fig. 3). This figure
demonstrates that an application of both spherical arrays can
estimate the speaker position within a radius of rcorr = 0.3
m with a hit rate of more than 90 %. The ceiling-mounted
array needs approximately rcorr = 0.4 m to reach the same
hit rate of 90 %. As explained before, one spherical array is
insufficient to estimate the accurate position.

When using both spherical arrays as well as the ceiling-
mounted microphones there is a strong increase of the lo-
calization rate in the range of rcorr ≈ 0 . . . 0.3 m and
rcorr ≈ 0 . . . 0.4 m, respectively. For larger rcorr the gradient
decreases which means choosing rcorr larger than these ranges
does not result in significantly higher localization rates. In case
of using one sphere only, the point where the localization rate
gradient turns smaller lies at rcorr ≈ 0.7 . . . 0.8 m.

V. CONCLUSIONS

In this paper we evaluated well-known algorithms for 3D
acoustical localization with constraints on the array design. In
the context of ambient assisted living the array should be as
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Fig. 4. Percent-correct hit rates calculated by using the estimated data from all five speakers. The x-axis represents the different speaker positions 1-5 and an
average for all positions. The first and second lines correspond to the GCC-PHAT and AED-PHAT TDOE estimators, respectively. The first and the second
columns correspond to the GCF and LMS algorithm, respectively. The lock-in range radius was set to rcorr = 0.4 m.

invisible as possible and the overall costs should be moderate.
Therefore, we built small spherical arrays which could be
hidden in lamps and an array of microphones hidden in the
ceiling. For both designs the microphones and the correspond-
ing amplifier and conversion chips were low-cost devices.
The results clearly indicate that localization is possible with
these arrays, if an error of 0.4 m can be tolerated. However,
only one sphere is not enough for exact localization. Only
the direction is estimated very well, which would be enough
for the beamformer application. One interesting result was the
effectiveness of the ceiling array with the AED algorithm, even
though the problem of spatial aliasing is present at all relevant
frequencies. At the moment we cannot present a reason for this
behavior and it is a question of ongoing research. Other open
issues to enhance the overall performance are

• smoothing the estimated positions over time to prevent
outlier.

• multi speaker tracking to prevent jumping back and forth
between the estimated position.

• tracking of temporary as well as constant noise sources.

ACKNOWLEDGEMENT

This research was (partly) funded by grant VWZN2420
(”Lower Saxony Research Network Design of Environments
for Ageing”) from the Ministry for Science and Culture of
lower saxony. The views and conclusions contained in this
document, however, are those of the authors.

REFERENCES

[1] J. Bitzer and K. U. Simmer, “Superdirective Microphone Arrays,”
in Microphone Arrays, M. Brandstein and D. Ward, Eds. Berlin,
Heidelberg, New York: Springer, May 2001, ch. 2, pp. 19–37.

[2] Lower Saxony Research Network Design of Environments for
Ageing. (2010, May). [Online]. Available: http://altersgerechte-
lebenswelten.de/index.php?id=21&L=1

[3] Offis e.V. (2010, May) Institute for Information Technology. [Online].
Available: http://www.offis.de/en/start.html

[4] C. H. Knapp and C. Carter, “The Generalized Correlation Method for
Estimation of Time Delay,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-24, no. 4, pp. 320–327, Aug. 1976.

[5] Y. Huang, J. Benesty, and G. W. Elko, “Adaptive eigenvalue decompo-
sition algorithm for realtime acoustic source localization system,” IEEE,
no. 0-7803-5041-3/99, pp. 937–940, 1999.

[6] J. Benesty, “Adaptive eigenvalue decomposition algorithm for passive
acoustic source lcalization,” Journal of Acoustical Society of America,
vol. 107, no. 1, Jan. 2000.

[7] J. Chen, J. Benesty, and Y. A. Huang, “Time Delay Estimation using
Spatial Correlation Techniques,” International Workshop on Acoustic
Echo and Noise Control (IWAENC), pp. 207–210, Sep. 2003.

[8] G. Doblinger, “Localization and Tracking of Acoustical Sources,” in
Topics in Acoustic Echo and Noise Control, E. Haensler and G. Schmidt,
Eds. Berlin: Springer Verlag, 2006, pp. 91–124.

[9] A. Brutti, M. Omologo, and P. Svaizer, “Comparison between different
sound source localization techniques based on a real data collection,”
IEEE HSCMA, no. 978-1-4244-2338-5/08/, pp. 69–72, 2008.

[10] P. J. Rousseeuw, “Least Median of Squares Regression,” Journal of the
American Statistical Association, vol. 79, no. 388, Dec. 1984.

[11] A. Brutti, M. Omologo, and P. Svaizer, “Localization of multiple
speakers based on a two step acoustic map analysis,” IEEE ICASSP,
no. 1-4244-1484-9/08/, pp. 4349–4352, 2008.

[12] M. Marzinzik and B. Kollmeier, “Speech Pause Detection for Noise
Spectrum Estimation by Tracking Power Envelope Dynamics,” Speech
and Audio Processing, IEEE Transactions on, vol. 10, no. 2, pp. 109–
118, Feb 2002.

[13] T. Rohdenburg, S. Goetze, V. Hohmann, K.-D. Kammeyer, and
B. Kollmeier, “Combined source tracking and noise reduction for ap-
plication in hearing aids,” in 8. ITG-Fachtagung Sprachkommunikation,
no. 8. VDE VERLAG GMBH, Oct. 2008.


