Evaluation of different microphone arrays and localization algorithms in the context of ambient assisted living

Christian Bartsch*, Andreas Volgenandt†, Thomas Rohdenburg† and Joerg Bitzer*†

* Institute for Hearing Technology and Audiology (IHA), Jade University Of Applied Sciences,
 Ofener Str. 16/19, 26121 Oldenburg, Germany, www.hoertechnik-audiologie.de
† Fraunhofer Institute for Digital Media Technology (IDMT) Department Hearing, Speech and Audio Technology (HSA),
 Marie-Curie-Str. 2, 26129 Oldenburg, Germany

Abstract—This paper presents the evaluation of full 3D sound source localization systems for real world living environments. We tested several well-established algorithms. The Generalized Cross Correlation Phase Transform (GCC-PHAT) and Adaptive Eigenvalue Decomposition Phase Transform (AED-PHAT) algorithms were implemented as Time Delay of Arrival (TDOA) estimators. For the localization itself a three dimensional acoustic map was computed using the Global Coherence Field (GCF) as well as the modified Least Squares (LS) algorithm called Least Median of Squares (LMS). The combinations of these techniques are applied to different microphone array configurations composed of two fundamental microphone arrays. These fundamental arrays are a set of ceiling-mounted sensors with large distances and a small spherical array. Finally, a Voice Activity Detector (VAD) was applied in order to avoid false localization estimations during speech pauses. For evaluation we recorded a database of speech signals in a natural living environment. The results show that the combination of ambient microphone arrays with modern localization algorithms are able to locate people in a room in all three dimensions. However, the localization is not perfectly accurate and an error up to 0.4 m has to be tolerated.

I. INTRODUCTION

Knowing the location of a sound source gives great benefit to many applications, e.g. for (multi talker) video conference systems. In this case the knowledge of the current speaker’s position offers the possibility to use further speech enhancement techniques like beamforming [1].

In our application we are interested in sound source localization in an Ambient Assisted Living (AAL) apartment. Therefore, the mounted microphones should be as invisible as possible. While the ceiling attached sensors could be concealed completely, hiding spherical arrays is a little more difficult. Our considered solution for that problem is to build a spherical array within a (designer) lamp. The advantages of the combination are that the lamp hides the installed microphones and a very nice indirect light would be created.

The apartment in which the implemented technologies were tested and used is a part of the "Lower Saxony Research Network Design of Environments for Ageing" [2], [3]. There are different applications considered within this project which are based on an accurate estimation of the position of the speaker. Some of these are controlling

• a beamformer,
• a multichannel playback system for spatial presentation of sounds,
• other devices, e.g. video control systems or lights.

II. USED ALGORITHMS

For our evaluation we only used well-known and established techniques. The algorithms are based on estimating either cross-correlation (CC) or the Time Delay of Arrival (TDOA) between two microphones. This can be done by using the Generalized Cross Correlation (GCC, [4]) and the Adaptive Eigenvalue Decomposition (AED, [5]–[7]) algorithms. The AED is used to estimate the eigenvector corresponding to the lowest eigenvalue of the combined signals of a microphone pair. It has been shown in [5] that this eigenvector contains a rough estimate of the impulse responses from the source to the two microphones. With an appropriate initialization of the AED [8] and a minimum search, the delay between the direct paths of the microphone signals can be estimated. Generally this is done in the frequency domain. For both TDOA algorithms, GCC and AED, a spectral weighting of the cross-spectral density between the inputs \(S_{y_k x_k}[\tau] \) is applied, according to the well-known Phase-Transform (PHAT) weighting.

The position of the speaker was estimated by employing an acoustic map. Acoustic maps are functions, defined over a sampled space of potential solutions that represent the plausibility that a source is present at a given point \(p \) [9]. In this contribution we compare two localization algorithms based on acoustic maps, the Least Median of Squares (LMS) which is a more robust extension of the well-known Least Squares (LS) approach [9], [10] and the Global Coherence Field GCF [9], [11]. Both algorithms sample the room into a discrete grid with a spacing of 0.1 m in each direction \(x, y \) and \(z \). While LMS uses the estimated TDOA only, the GCF takes advantage of the whole cross correlation function which means more computed information will be used.

For the TDOA estimation and the localization algorithms the following four combinations were tested: GCC-PHAT/LMS, GCC-PHAT/GCF, AED-PHAT/LMS and AED-PHAT/GCF.
We tested three sitting-positions (circles, upward- and downward-pointing triangles) as well as two standing-positions (diamonds and squares).

Table I shows the microphone array combinations we tested with the implemented algorithms.

TABLE I

<table>
<thead>
<tr>
<th>Combination</th>
<th>Arrays used</th>
<th>Number of possible microphone pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S_2</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>$S_1 & S_2$</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>28</td>
</tr>
</tbody>
</table>

Typically speech pauses reduce the robustness of localization algorithms for real-world acoustic scenarios. Therefore, a Voice Activity Detection (VAD) based on [12] was applied.

III. Evaluation

A. Acoustic scenario and microphone arrays

For this evaluation (compare Fig. 1) we used two different kinds of microphone arrays. The first array consisted of eight capacitor microphones which were mounted at the ceiling of the living room. The minimum distance between a pair of microphones in this array was $d_{\text{min}} = 0.78$ m while the maximum distance measured $d_{\text{max}} = 3.33$ m. As a second and third array we used two self-build spherical arrays which were made from styrofoam spheres with eight low-priced electret capsule microphones. Since they were placed uniformly distributed on the sphere’s surface the microphones would span a cube with equal edge lengths of 0.087 m.

Fig. 2. Schematic view of a spherical array that contains 8 microphones. The microphones are placed uniformly distributed on the sphere’s surface which means connecting all neighboring microphones would span a cube with equal edge lengths of 0.087 m.

- We used low-priced microphones that had not been calibrated according to frequency or level in order to have a practical and realistic constraint for AAL applications.
- We did not measured the spatial positions of the microphones and arrays accurate to a millimetre.

Finally, our configuration has 24 microphone channels which are recorded simultaneously at a sampling frequency of $f_s = 48$ kHz and a resolution of 16 bits.

The different speaker positions (three sitting- and two standing-positions), the microphone positions, and the position of the sphere-arrays that we tested are shown in Fig. 1.

B. Methodology

All tested algorithms were implemented in a MATLAB block processing framework. The size of the blocks was 12.5 ms which results in a length of 1024 samples at the given sampling frequency of $f_s = 48$ kHz. Before calculating anything all data were filtered through a third order Butterworth high-pass filter with a cut-off frequency of $f_c = 100$ Hz. This filter was supposed to avoid estimation errors caused by foot fall sounds which may temporarily occur.

Originally the test sounds were used to train a speech recognition system. Therefore, speech pauses were introduced deliberately, which are responsible for a high amount of estimation errors. These are caused by a computer rack outside the room, which was localized in the absence of speech. To prevent this a combination of a voice activity detector (VAD) and a moving root mean square (MRMS) threshold decision method was implemented. As VAD we used the technique proposed by [12] which performs quite well in noisy environments. However, the VAD can produce false alarms in quiet situations, so we used the MRMS decision method as a second step. Only if the MRMS is greater than a predefined threshold and if the VAD signalizes “speech” on all microphone channels, acoustical activity will be identified and the current data block will be used for localization.

The calculation of the GCC/AED algorithm starts instantly after acoustical activity is detected. However, the position estimation through GCF/LMS starts with a little time-shift to GCC/AED. The time shift is $t_s = 0.1$ s which equates...
to the smoothing time of the cross spectrum calculation for
the GCC. This approach takes advantages of the fact that the
TDOA estimation needs a few blocks of processing to adapt.
The estimated positions were not smoothed over time because
speaker tracking is not a topic in this article. We also tried
to improve the time delay estimation for the spherical arrays
by incorporating head models [13]. However, no significant
advantages justifying the higher computational complexity
could be found.

C. Determining the hit rate
If we estimate a position \(\hat{p}(n) = [\hat{x}(n), \hat{y}(n), \hat{z}(n)] \) in
the three-dimensional space at a time step \(n \), the error \(e(n) \) of this
estimation is given as

\[
e(n) = \| \hat{p}(n) - p \|, \text{ with the true source position } p.
\]

That means the error \(e(n) \) stands for the spatial distance
between true position and estimation. Further we defined a
percentage-correct measure depending on the radius \(r_{corr} \)
of a lock-in range sphere around the true position. If \(\hat{p}(n) \) lies
inside this sphere the estimation is identified as “correct”:

\[
P_{corr}(n) = \begin{cases} 1, & \text{if } e(n) < r_{corr} \\ 0, & \text{else} \end{cases}
\]

(2)

Finally, the hit rate of a full trial can be calculated as

\[
P_{corr,trial} = \frac{1}{N} \sum_{n=1}^{N} P_{corr}(n), \text{ with number of time steps } N.
\]

(3)

We evaluated the arrays and algorithms with different lock-
in range radiuses in the range of \(r_{corr} = 0 \ldots 1 \) m.

IV. RESULTS
An overview of all results by using a lock-in range radius
of \(r_{corr} = 0.4 \) m is given in Fig. 4. The worst hit rates
were produced by using only one spherical array. This could
be explained by the fact that the mapped area of a sound
source is not circular but long drawn-out in the acoustical
map [11]. Moreover, it holds that a smaller distance between
the microphone pairs leads to extended mapped areas. Thus,
finding the correct position is more difficult if the mapped area
is very long drawn-out. However, if you look at Fig. 1, it is
clear that only the estimation of the exact position fails when
using only one spherical array whereas the estimation of the
direction is quite good.

GCC-PHAT/LMS seems to be the worst algorithm
combination with the largest variances. A reason for that could
be that the LMS only uses the estimated TDOA \(\hat{\tau} \) between
a pair of microphones, but not the whole cross-correlation
data like the GCF does. Furthermore, if the spatial distance
between the used pair of microphones is large, which is the
case when using both spheres or the ceiling array, AED-
PHAT might produce better TDOA estimations than GCC-
PHAT. This explains why the degradation of GCC-PHAT/LMS
is significant compared to the other algorithm combinations
when using both spheres or the ceiling array, but not when
using only one spherical array.

Using both spherical arrays causes the best of all hit rates
for all the algorithm combinations, which is not surprising
because in this case 16 microphones instead of 8 microphones
were used. But also the ceiling-mounted microphones alone
can produce quite good estimation results by using AED-
PHAT/GCF.

Furthermore, Fig. 4 shows, that LMS does not enhance
the hit rates compared to GCF. Since LMS needs more
processing power than GCF, we have selected GCF as the
better localization technique for our microphone array setups
at the AAL-laboratory.

Moreover, we have chosen the three best array-algorithm
combinations and plotted their localization rates depending
on the lock-in range radius \(r_{corr} \) (Fig. 3). This figure
demonstrates that an application of both spherical arrays can
estimate the speaker position within a radius of \(r_{corr} = 0.3 \) m
with a hit rate of more than 90 %. The ceiling-mounted
array needs approximately \(r_{corr} = 0.4 \) m to reach the same
hit rate of 90 %. As explained before, one spherical array is
insufficient to estimate the accurate position.

When using both spherical arrays as well as the ceiling-
mounted microphones there is a strong increase of the lo-
calization rate in the range of \(r_{corr} = 0 \ldots 0.3 \) m and
\(r_{corr} = 0 \ldots 0.4 \) m, respectively. For larger \(r_{corr} \) the gradient
decreases which means choosing \(r_{corr} \) larger than these ranges
does not result in significantly higher localization rates. In case
of using one sphere only, the point where the localization rate
gradient turns smaller lies at \(r_{corr} = 0.7 \ldots 0.8 \) m.

V. CONCLUSIONS
In this paper we evaluated well-known algorithms for 3D
acoustical localization with constraints on the array design. In
the context of ambient assisted living the array should be as
invisible as possible and the overall costs should be moderate. Therefore, we built small spherical arrays which could be hidden in lamps and an array of microphones hidden in the ceiling. For both designs the microphones and the corresponding amplifier and conversion chips were low-cost devices. The results clearly indicate that localization is possible with these arrays, if an error of 0.4 m can be tolerated. However, only one sphere is not enough for exact localization. Only the direction is estimated very well, which would be enough for the beamformer application. One interesting result was the effectiveness of the ceiling array with the AED algorithm, even though the problem of spatial aliasing is present at all relevant frequencies. At the moment we cannot present a reason for this behavior and it is a question of ongoing research. Other open issues to enhance the overall performance are

- smoothing the estimated positions over time to prevent outlier.
- multi speaker tracking to prevent jumping back and forth between the estimated position.
- tracking of temporary as well as constant noise sources.

ACKNOWLEDGEMENT

This research was (partly) funded by grant VWZN2420 (“Lower Saxony Research Network Design of Environments for Ageing”) from the Ministry for Science and Culture of lower saxony. The views and conclusions contained in this document, however, are those of the authors.

REFERENCES

