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Danilo Hollosi, Jens Schröder, Stefan Goetze, and Jens-E. Appell
Fraunhofer Institute for Digital Media Technology (IDMT), project group Hearing, Speech and Audio Technology (HSA)

Marie-Curie-Str. 2, 26129 Oldenburg, Germany, Email: danilo.hollosi@idmt.fraunhofer.de

Abstract—This contribution focuses on acoustic event detection
and classification for monitoring of elderly people in ambient
assistive living environments such as smart homes or nursing
homes. We describe an autonomous system for robust detection
of acoustic events in various practically relevant acoustic situa-
tions that benefits from a voice activity detection inspired pre-
processing mechanism. Therefore, various already established
voice activity detection schemes have been evaluated beforehand.
As a specific use case, we address coughing as an acoustic event
of interest which can be interpreted as an indicator for a poten-
tially upcoming illness. After the detection of such events using
a psychoacoustically motivated spectro-temporal representation
(the so-called cochleogram), we forward its output to a statistical
event modeling stage for automatic instantaneous emergency
classification and long-term monitoring. The parameters derived
by this procedure can then be used to inform medical or care-
service personal.

I. INTRODUCTION

The continuous growth of the amount of elderly people
poses great challenges to the health-care systems in many
countries. This problem will become even more severe within
the next years [1]. The possibility to stay in their own houses or
flats independently is, thus, not only highly desired by the el-
derly, it will become inevitable for functioning social systems
[2]. Technical systems (commonly known as ambient assistive
living (AAL) technologies) are able to provide assistance to
the elderly to improve daily living conditions, security and
independence [2].

Various sensors can be used for monitoring different aspects
of the home environment or the person’s health status. Acous-
tic sensors in combination with appropriate signal processing
strategies [3]–[7] are able to detect, analyze and track various
information in smart homes unobtrusively, such as falling
objects, possibly dangerous situations [8], [9] or the position
of the user [10].

This work presents a three-stage approach for identification,
classification and interpretation of such situations and is or-
ganized as follows. First, a concept for a system is described
that combines the three-stage approach computationally (see
Section II). In the next step, detailed information on each
stage and its algorithmic steps are presented in Section III.
This includes a description of the pre-processing stage in
Section III-A, information on the event detection stage in
Section III-B and our statistical approach for instantaneous
emergency classification and long-term monitoring in Section
III-C. Based on these information, further action can be
initiated by the system, e.g., such as calling a care-service
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Fig. 1. System overview of the proposed system.

in case of a potentially dangerous event. Sections IV and V
draw conclusions and present ideas for future work.

II. SYSTEM OVERVIEW

The proposed system consists of three major processing
stages: a VAD scheme to obtain low-level information about
the input signal, followed by an event detection stage to derive
mid-level contextual information about the data and, finally,
an emergency modeling stage to formulate short- and long-
time high-level semantics. A general overview of the proposed
system is given in Fig. 1.

The input signal is first segmented into frames (of 32 ms
length with an overlap of 27 ms) and fed to a VAD scheme
that adaptively separates background noise from signal parts
containing desired information. The selection of a suitable
VAD scheme is based on a comparison between already
established VAD algorithms. If a segment is identified to
contain voice, the segment is fed to an event detector which
has been initialized with a trained event model from a model
database. In this work, we select a model for detecting coughs
with a binary label output. These labels are then fed to
an event modeling scheme to determine information about
the reoccurrence, the strength and the duration of the event
within a given time interval. They are the basis for a rule-
based instantaneous emergency classification model and a
statistical approach that allows long-term monitoring and the
surveillance of the progression of an event over a longer
period of time. If a potentially dangerous event is identified,
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Fig. 2. VAD decision output (grey line) for an example audio recording:
(a) the original recording and (b) the same recording with -15dB additive
pink noise. Note that VAD becomes a non-trivial task in (b) due to the noise
corruption.

a message is generated to inform medical or care-service
personal. The emergency model is not only limited to the
detection of coughs, but can be applied to any event that is to
be monitored. The proposed system works fully automatically
without storing contextual information, which leads to higher
end-user acceptance than e.g. video-surveillance. At the same
time, it can be modified in such a way that it can be imple-
mented in already available in-home communication systems
and housing technologies. A detailed description of the system
and the algorithmic steps is given in the following section.

III. ALGORITHM

A. Preprocessing
In general, an audio signal recorded by a microphone in

real-world environment can be described as a combination
of background sounds and foreground acoustic objects. Since
only the latter ones are of interest they have to be separated
from the background sound sources in a pre-processing stage.
Therefore, an algorithmic scheme is desired which is charac-
terized by a high sensitivity for acoustic foreground objects, a
high temporal resolution to meet the event characteristics and
low computational complexity.

One particular class of foreground-background separation
schemes is of interest in our context: the well-studied energy-
based VAD algorithms. They usually work under the assump-
tion that an input audio signal consists of speech and stationary
background noise only [21]. However, for monitoring in
general and the surveillance of rooms and environments in
particular, other events of non-stationary and sometimes high-
leveled transient character apart from speech can be found very
often. Thus, an energy-based VAD algorithm that does not
include a particular speech model could classify such events
as a voice activity as well, such that its applicability is not
only limited to speech signals.
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Fig. 3. The evaluation of various VAD algorithms according to their
performance in noisy environments. Pink noise with a SNR in the range of
0 dB - 20 dB was added to the test data.

In order to select a suitable pre-processing algorithm, we
evaluate several energy-based VAD schemes according to their
performance under noisy conditions as depicted in Fig. 2,
exemplary. In particular, we investigate the VAD schemes
proposed by Marzinzik and Kollmeier [11], the long-term
spectral divergence VAD method proposed by Ramirez et
al. [14] and the VAD proposed by Shafran and Rose [12] as
a modification of a minimum statistics based noise estimation
algorithm. Inspired by this approach, we also apply a similar
modification to the Minima Controlled Recursive Averaging
(MCRA) noise estimation algorithm for speech enhancement
proposed by Cohen et al. [13] due its robustness in noise and
low computational costs.

The algorithms were evaluated on two hours of audio
recordings captured in an office and living room environment,
whereas 30 minutes of audio was used to find the optimal
settings for each algorithm. All the recordings contain various
noise sources such as fans, keyboard sounds, telephone rings
and music. Additionally, pink noise at SNR ranging from 0 dB
to 20 dB was added to the recordings to investigate the VAD
performances also in highly noisy environments. In Fig. 3,
the results of this experiment are illustrated as a function of
Correct Hit Rate and False Alarm Rate at various SNR.

Besides a high Correct Hit Rate, a low False Alarm Rate of
a suitable VAD method is desired for our application scenario
to minimize the computational overhead introduced in the
event classification stage. Together with the criteria mentioned
at the beginning of this section, we identify the VAD method
proposed by Ramirez [14] as a suitable algorithm for our work.

If an input segment is labeled as voice activity, it is fed to the
event detection stage where the segments are further analyzed
w.r.t. events of interest and potentially dangerous situations.
Otherwise, the system proceeds with the next input segment.
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Fig. 4. Cochleogram of a series of coughs (left), its background model (middle) and the separated foreground that is used for classification (right).

B. Event Detection
In this work, we address coughing as an event of in-

terest. At first, each segment of the input signal labeled
as voice activity is transformed into a psychoacoustically
motivated time-frequency representation in order to access
both, temporal and spectral characteristics. Therefore, the so-
called cochleogram [15] is calculated, which utilizes a 93
band gammatone filter-bank with center frequencies ranging
from 20 Hz to 8 kHz in 2.85 ERB distances distributed
around 1 kHz. The gammatone-filterbank accounts for the
non-linearity in human frequency and loudness perception,
such that the resulting signal representation becomes closer
to the perception of sound signal within the human auditory
system. At the same time, event detectors benefit from this
transformation as well, as shown in [8], [9], [15].

At this processing stage, the cochleogram contains acoustic
events within noisy background sounds such as e.g. fans and
street noise. To avoid misclassification of the detector, the
acoustic foreground objects, i.e. coughs, need to be separated
from the background noises. Therefore, a dynamic background
model is applied to the cochleogram that estimates the level
of the background noise for a given time frame from the
background noise level of previous time frames. An initial
estimate for the background noise is determined by analyzing
non-voice activity labeled segments in the pre-processing
stage. Based on the background noise estimates, a probability
mask is generated that separates the background noise from
the acoustic foreground objects. Detailed information on the
used foreground-background separation procedure can again
be found in [15]. Please note, that the foreground-background
separation can be extended to suppression of non-stationary
background noises e.g. using well known approaches as in
[16], [17].

An example of a coughing sequence as well as its separated
background and acoustic foreground is shown in Fig. 4.
Obviously, the cough sequences are characterized by highly
frequently reoccurring individual events, which again under-
lines the necessity of a temporally fine-grained segmentation
in the pre-processing stage.

The average absolute difference between the foreground
and a previously trained model of the same representation is
computed in the next step. In our system, we use a model for
human cough detection that has been trained by analysis of

various cough recordings. This step leads to a measure of the
similarity between the input segment and the characteristic
event pattern. If this measure becomes reasonably high, the
segment is declared to contain an event that might be an indi-
cator for a dangerous situation. Similar to the VAD algorithm
described in the previous section, the event detector outputs a
binary decision for each input segment that indicates whether
a cough was detected or not. This information is then used to
formulate statistics about the progression of the event in time
and a scheme for identifying a potentially dangerous situation
as it will be described in the following section.

C. Event Statistics for Emergency Classification
In this section, we describe a concept to model an emer-

gency from its temporal characteristics. Both, short-term char-
acteristics for instantaneous emergency classification and long-
term characteristics for monitoring the progression of events
over a longer period of time are covered by this concept.

Therefore, the model must reliably identify deviances be-
tween a set of parameters for an actual time interval based
on the knowledge gained from previous time intervals. Since
we address coughing as an event, we assume that deviant
parameters correspond with a changing state of health, both in
a positive and a negative way. Thus, the model should output
a reliability measure to rank the current situation accordingly.
1) Instantanous Classification: For instantanous emergency

classification, we continuously monitor the output of the event
detector by extracting suitable parameters. An illustration of
the model including the extracted parameters can be found in
Fig. 5. At the beginning, the binary output of the event detector
is filtered using a 1st order recursive smoothing filter

y∗(n) = α y(n) + (1 − α) y∗(n − 1) (1)

to obtain a suitable representation for instantaneous classifica-
tion.

This step merges temporally close situated binary events,
reduces the influence of sparse occurring events in the clas-
sification scheme and leads to an increase in the function
y∗(n) for high frequent occurring events. In the next step, a
threshold TY is defined as the lower boundary for a potentially
dangerous situation. Its duration

D = ne − ns (2)
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Fig. 5. Example of an Event Statistic with derived parameters

is defined as the difference between the end point ne and
the start point ns in time where the relation y∗(n) > TY

is fulfilled. An emergency is detected if the duration D of a
potentially dangerous situation exceeds a predefined threshold
TD.

Additionally, we introduce the parameter acuteness

A =

ne∑
ns

y∗(n) (3)

as a measure for the strength of a potentially dangerous
situation which is calculated by integrating the pre-processed
event detection function y∗(n) within the duration D of a
potentially dangerous situation. In our context, A is a stronger
indicator for an emergency compared to parameter D.

An emergency is signed once the Acuteness reaches a
predefined maximum TA during integration. TA is chosen in
such that the integration time to reach the threshold is smaller
compared to the duration D for high frequent reoccurring
events within short periods, i.e. for very steep increases of the
function y∗(n). If A does not reach its predefined threshold
TA within the integration time D, an emergency can still be
signed as long as D exceeds its predefined threshold TD.
The pseudocode for the instantaneous emergency classification
scheme can be found in Fig. 6.
2) Long-Term Monitoring: The main idea behind the long-

term monitoring model is to extract meaningful parameters
from the sensor data, i.e. the audio signal captured by a
microphone over a certain period of time and to put them into
relation with parameters extracted from a previous time period.
Therefore, a suitable time-basis needs to be defined first.
Similar to previous approaches for human behavior modeling
[20], we define a causal time-interval of one day, which is then
sampled into a number of disjunct sub-intervals. This approach
not only allows for monitoring of the event progression within
sub-intervals and across them, but also along longer periods
of time by forming integrally related multiples of the causal
time intervals of one day. Additionally, the freedom to form
even longer observation periods as a function of the desired
application is guaranteed.

To analyze the progression of the events over the specified

if y∗(n) > TY

start calculation of D

start calculation of A
if A > TA

sign emergency
elseif D > TD

sign emergency
end

elseif y∗(n) <= TY && y∗(n − 1) > TY

store D, ns and reset parameters
store A, and reset parameters

end

Fig. 6. Pseudocode for determination of an emergency based on the extracted
features duration D, acuteness A and the corresponding thresholds TD , TA

and TY

causal sub-intervals within a day, we formulate a generalized
histogram as given in (4). Here, the parameters mta

and mt

denote event parameters within the actual sub-interval ta in
a causal time-interval t. The discretization parameter c is set
according to the desired number of disjunct sub-intervals.

H(mta
) =

ta∑
t=1

{
1 if mt − c ≤ mta

≤ mt + c

0 else
(4)

The choice of the sub-intervals heavily depends on the
desired application and the events to monitor. At the same
time, the number of sub-intervals should be chosen in such a
way that widely spread distributions of the event data in the
histogram are avoided. According to [18] and [19], the number
of sub-intervals should not exceed 15, which otherwise would
lead to insufficient capturing of reoccurring events - which is
especially true for events with low a-priori probabilities - in the
histogram. By taking these findings into account, a causal time
interval of one day is sampled on a two hour basis, resulting
in 12 sub-intervals per day.

In our scenario of human cough detection and monitor-
ing for emergency classification, the event parameters to
form long-term statistics are derived from the instantaneous
emergency model described in the previous subsection. In
particular, we utilize the number of events within a given sub-
interval counted as the number of non-coughing to coughing
transitions in y(n), their temporal location in the causal time
interval of one day, the temporal distance between consecutive
events, i.e. coughs, the event duration D as given in (2) and
the event acuteness A as defined in (3).

Additionally, we compute the mean duration and the mean
acuteness of the events detected within a sub-interval as
well as their variances to capture fluctuations in the event
progression. In total, nine parameters are available to monitor
event progressions using their histogram representations and
to identify potential dangerous situations.

Once a causal time-interval is expired, the histogram can
be calculated for each parameter. By comparing the histogram
with data from previous time-intervals, we are now able to
compute an estimation for the risk of a potential emergency.
This parameter helps us to survey the health state of a



person over a longer period of time based on the measures
for coughing. The risk can be computed as the normalized
distance of the actual event sample mta

in the histogram from
normality, i.e. the maximum value of the previous histograms
H(mt) as given by:

r(mta
) =

H(mta
) − maxt<ta

((H(mt))∑
t H(mt)

(5)

The state of health can change both in a positive and
negative way. The latter one in our context is characterized
by a higher number of coughs per time interval compared to
the previous time intervals, a higher density of coughs around
a certain point in time and a smaller temporal distance between
consecutive coughs. For negatively changing health states the
risk probability reaches values greater than zero, whereas for
positively changing health states, the risk values stay below
zero. The overall risk is defined as the weighted mean of all
risks obtained from the given parameters.

r̄(ta) =

∑I

i=1 wiri(mta
)∑I

i=1 wi

(6)

Here, wi denotes the weight of the risk contribution of
the i-th parameter for the actual time-interval. The weights
are chosen according to the desired application and were
set to equal 1/9 in our context. The overall risk parameter
r̄(ta) can then be used to interpret the health state of a
monitored person and to inform social and medical personal
that increased attention is necessary. Furthermore, it can be
used to adaptively update the thresholds in the instantaneous
emergency classification stage. However, this is subject to
future work.

IV. CONCLUSION

In this paper, we proposed a system for monitoring and
emergency classification in smart homes. We showed that
the combination of a pre-processing stage to obtain low-
level information, an event detection stage to extract a mid-
level representation from the input audio data and a stage for
interpretation of this representation to high-level semantics can
be used to support people in their daily life and to notify the
need for intervention when necessary. Despite that a specific
use case was addressed in this work, the approach presented
here can be transferred to other applications and situations
apart from cough detection as it is indicated by the presence
of a model databases and the high degree of freedom to
form temporal models in the system. Furthermore, various
parameters offer the possibility to adjust the system to various
environments and conditions.

V. FUTURE WORK

In order to test the system under realistic environments,
extensive communication and an exchange of ideas with
manufacturers, service providers, as well as health and social
institutions is crucial. Replacing the rule-based approach in
the instantaneous emergency classification stage with a trained

classifier would allow the system to be even more flexible.
Therefore, additional data is necessary for training which
again underlines the necessity for further, interdisciplinary
communication with industry and institutions.
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