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INTRODUCTION

Together with vision, hearing is the most impor-
tant human sense. The ability to perceive sound 
enables us to locate and classify sound sources 
and forms the basis of our orientation and com-

munication. Both in private and at work, speech 
communication is of utmost importance, and has 
been largely influenced by advances in modern 
technology. A wide range of applications is avail-
able to facilitate acoustic interaction between 
people, ranging from mobile communication 
devices to video-conferencing systems. In the 
past years, the prevalence of computer-based 

ABSTRACT

The importance of personalized and adaptable user-interfaces has been extensively discussed (European 
Ambient Assisted Living Innovation Alliance, 2009; Alexandersson et al., 2009). However, it often remains 
unclear how to specifically implement such concepts. In the field of acoustic communication, existing 
models and technologies offer a wide range of possibilities. Based on these technologies, this chapter 
presents a concrete realization of a model-based interface in the field of acoustic human-computer in-
teraction. The core element of the implementation is a holistic approach towards a hearing perception 
model, which incorporates information of the acoustic environment, the context and the user himself 
provides relevant information for control and adjustment of adaptable and personalized acoustic user 
interfaces. In principle, this way of integrating state-of-the-art technologies and models into user inter-
faces could be applied to other sensory perceptions as e.g. vision.
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applications has given rise to an increased im-
portance of human-machine interaction. Acoustic 
information transfer between users and computers 
can be bidirectional, i.e. the user can both receive 
acoustic signals (e.g. spoken information) and in-
teract with the system, e.g. by speech commands. 
Voice-controlled systems are particularly useful 
when human-machine communication is needed 
in hands-free applications or when the user is 
unable to use other means of input. Many other 
fields in modern societies could benefit from a 
well-working acoustic human-computer interac-
tion. So far, however, the particular needs of the 
individual users have not been carefully taken 
into account in the design process and practical 
application of acoustic user interfaces. Particu-
larly, but not exclusively, the significant part of 
people with hearing deficiencies could benefit 
from adaptable and personalized acoustic user 
interfaces. In modern societies, hearing impair-
ments are widely spread. Recent figures estimate 
that about 16% of the population in industrialized 
countries suffer from hearing deficiencies (Shield, 
2006). Due to age related deterioration of nerve 
cells in the inner ear, this percentage is much higher 
in older subgroups of the population. Different 
estimates report that between 37% and 56% of 
the population aged 60 to 70 years suffer from 
hearing loss (Uimonen et al., 1999; Sohn, 2001; 
Davis, 2003; Johansson and Arlinger, 2003). In 
the light of the demographic change, the number 
of hearing-impaired people is expected to increase 
rapidly in the next ten years and to almost double 
by 2030 (Shield, 2006).

Given the growing importance of human-
computer interaction, acoustic interfaces should 
be accessible to the whole population in as many 
applications as possible. Particularly for hearing-
impaired people, but also for people having spe-
cial needs in communication, like e.g. jet pilots, 
the interfaces have to be adaptable to different 
environments and situations and personalized 
individually.

This chapter proposes a perceptual approach, 
which aims at a concrete realization of a model-
based interface in the field of acoustic human-
computer interaction. The core element of the 
implementation is a holistic approach towards the 
inclusion of a hearing perception model, which 
incorporates information of the acoustic environ-
ment (e.g. reverberation time, damping of walls 
and ceilings), the current acoustic context (e.g. 
presence of noise sources), as well as informa-
tion on the individual user himself (e.g. hearing 
loss). The model can thereby provide relevant 
information for the control and adjustment of the 
interfaces for user interaction.

This chapter is organized as follows. Firstly, 
the factors influencing acoustic communication 
in daily life are described and the particular dif-
ficulties for hearing-impaired users of acoustic 
interfaces are summarized. Secondly, state-of-
the-art technologies to increase the accessibility 
of acoustic communication systems are surveyed 
and their possibilities and limitations to support 
acoustic human-machine interaction are discussed. 
It is shown that existing models and technologies 
already offer a wide range of support, but that a 
combined approach based on the individual per-
ception of sound is needed to realize adaptable 
and personalized acoustic user interfaces. Such 
an approach is presented subsequently before 
specific applications are illustrated. In the end, 
the chapter is briefly summarized and concluded.

ACOUSTIC COMMUNICATION IN 
NORMAL AND IMPAIRED HEARING

Factors Influencing 
Communication Quality

Speech communication is the most natural way of 
information exchange. In everyday life, however, 
adverse acoustic factors such as background noise, 
competing speech or reverberation can reduce the 
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quality of the communication or even prevent 
humans from understanding at all. Fortunately, 
the healthy hearing system is quite robust towards 
such difficult acoustic conditions. A well-known 
phenomenon is the fact that humans are able to 
focus on individual speakers, even when a lot of 
different competing sound sources in the same 
room superimpose with the speech signal. This 
ability of the hearing system is commonly referred 
to as the cocktail-party effect and has been subject 
to research for several decades now (e.g. Cherry, 
1953; Bronkhorst, 2000). Several studies have 
shown that the auditory system can benefit from 
level and phase differences between the signals 
reaching the left and right ear. For example, a noise 
source from the right-hand side arrives earlier at 
the right than at the left ear. Additionally, the head 
serves as a physical barrier and, thus, the sound 
reaching the left ear will generally be softer than 
at the right ear. For comparison, a speech signal 
perceived from the front leads to no differences 
in arrival time or level between the two ears. If 
noise from the right and speech from the front are 
perceived at the same time, the normal-hearing 
auditory system can distinguish between the two 
sources since only one of them evokes differ-
ences at the two ears. This ability is very helpful 
in acoustic conditions with spatially distributed 
noise sources and supports our daily speech com-
munication as well as our orientation. Despite the 
robustness of the healthy hearing system, the use 
of acoustic interfaces can be difficult in many 
situations even for normal-hearing people. For 
example, high levels of ambient noise in a driving 
car or a large amount of reverberation in a church 
lead to an increased effort for communication. Due 
to the increasing importance of human-machine 
interaction, technological support to ensure accept-
able communication quality is highly desirable.

In cases when acoustic communication is 
difficult already for normal-hearing people, the 
problems resulting from a reduced functionality 
of the hearing system can be considerable. Hear-

ing impairments exists in various facets and it 
is beyond the scope of this chapter to detail the 
effects of each facet and its impact on acoustic 
communication (see e.g. Moore, 1985, 1995, 
1996). In general, two broad classes of hear-
ing impairments are distinguished (Yost, 2000; 
American Speech-Language-Hearing Associa-
tion, 2009). The class of conductive hearing losses 
is related to the physical property of the ear to 
transmit sound waves. For example, infections 
or disorders of the outer and middle ear or an 
obstructed ear canal impede the transmission of 
sounds and increase the so-called threshold of 
hearing, which describes the sound pressure level 
that is needed for a specific acoustic event to be 
perceived by the human listener. The other, more 
prevalent class of hearing impairments is based 
on deficiencies in the inner ear or even higher 
stages of the neural sound processing. These so-
called sensorineural hearing losses are typically 
related to a loss of nerve cells which perform the 
transduction from physical oscillations to neural 
information. These cells deteriorate over time, 
resulting in the well-known age-related hearing 
loss. A further cause of irreversible cell deteriora-
tion is the exposition to high-level sounds over 
long periods of time (e.g. occupational noise or 
loud concerts, see Felchlin and Hohmann, 1997; 
Bormann et al., 2005). Depending on the kind and 
degree of hearing impairment, the use of speech 
communication can be significantly impeded. In 
contrast to visual impairment, which can be cured 
by purely passive devices such as lenses or glasses 
in most cases, even the most recent hearing aids 
cannot completely restore the functionality of 
the complex hearing system and its nerve cells. 
Therefore, especially under disadvantageous 
acoustic conditions, hearing-impaired people 
inevitably have problems in communication and 
orientation, since part of the speech information 
cannot be extracted from the signal anymore. The 
particular problems of hearing-impaired people 
are addressed in the following.
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Effects of an Elevated 
Threshold of Hearing

Figure 1 illustrates the effect of hearing loss on 
speech intelligibility in audiogram representation. 
The audiogram shows the deviation from normal 
hearing, expressed as hearing level in decibels 
(dB), as a function of frequency. By convention, 
increasing hearing levels are plotted downwards. 
The audiogram gives insight into the individual 
frequency dependence of the hearing threshold. 
The measurement of the audiogram is the standard 
audiometric test procedure (Katz et al., 2009) and 
indicates which frequency components of sounds 
can be heard in the absence of any other sounds. 
All sounds below the curve in the audiogram are 
loud enough to be perceived. As indicated by 
circles in Figure 1, the normal hearing system is 
able to perceive sounds with a hearing level of 
about 0 dB and larger. There is some controversy 
as to the exact definition of normal hearing and 
hearing impairment, but from a clinical point of 
view, a deviation in the hearing threshold of up 
to 20 to 25 dB from the reference at 0 dB hearing 
level is still understood as being ’normal hearing’ 
(Martini, 1996). Higher hearing levels indicate a 
hearing loss.

The curves indicated with different markers 
in Figure 1 show average hearing losses for dif-
ferent age groups that have to be expected purely 
due to age-related loss of nerve cells (ISO, 1990). 
Since the curves show the median observed hear-
ing loss at different ages, it should be pointed out 
that half of the population has a stronger hearing 
loss compared to this average. It can be seen that, 
particularly at high frequencies, hearing thresholds 
are elevated. The gray area in Figure 1 indicates 
the typical level range and frequency distribution 
of speech. Individual speech fragments are posi-
tioned according to their principal frequency 
content (note that neither of these fragments 
consists of a single frequency only). Given the 
average hearing losses, an increasing part of the 
speech information can no longer be perceived 
by older people and, for example, the distinction 
between ’f’, ’s’ and ’th’ is not possible any more. 
As described above, in addition to the age-related 
hearing loss, diseases or exposure to occupa-
tional or recreational noise over longer periods 
and conductive hearing losses may further increase 
the overall hearing loss and, thus, the loss of 
speech information in conventional speech com-
munication. Hearing impairments as depicted in 
Figure 1 indicate that already in a quiet environ-

Figure 1. Audiogram of normal-hearing and hearing-impaired people suffering from age-related hearing 
loss (ISO, 1990). The gray area indicates the typical intensity distribution of speech across frequency
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ment, parts of the speech information cannot be 
perceived when spoken at ordinary levels. Par-
ticular problems arise in non-optimal acoustic 
conditions when noise and reverberation are pres-
ent. In such cases, communication can be very 
difficult and tiring for hearing-impaired people, 
even though their audiogram data might indicate 
only small deviations from normality.

Effects of a Reduced Dynamic 
Range and Loudness Recruitment

Normal-hearing people are able to perceive sound 
in the range of about 0 dB to 110 dB hearing 
level, which represents the level range between 
the hearing threshold and level at which sounds 
become uncomfortably loud. The area between 
the threshold of hearing and the uncomfortable 
level represents the dynamic range of the hear-
ing system.

It is important to mention that even though the 
threshold of hearing is increased in sensorineural 
hearing impaired, the level of uncomfortable 
loudness typically is not increased accordingly. In 
contrast, the uncomfortable level is often similar 
(or even slightly lower) than for normal-hearing 
people. In combination with the elevated hearing 
threshold, this means that the level range at which 
sounds can be perceived is reduced. In addition to 
a loss of information due to the elevated thresh-
old, this reduced dynamic range causes problems 
in communication for hearing-impaired people, 
because sounds which are clearly audible are 
perceived differently by hearing-impaired people.

One important reason for this is a modified per-
ception of loudness, which is illustrated in Figure 
2. The left panel shows equal-loudness contours of 
a normal-hearing listener, i.e. the levels at which 
different frequencies are perceived as equally loud. 
Five different curves show the levels which are 
perceived as ’very soft’, ’soft’, ’medium’, ’loud’ 
and ’very loud’, respectively. When expressed in 
dB hearing level as in the audiogram, the equal-
loudness loudness contours are fairly flat for 

normal-hearing listeners, i.e. different frequencies 
are perceived as equally loud at about the same 
hearing level. The equivalent data of a person suf-
fering from sensorineural hearing loss is shown 
by solid lines in the right panel of Figure 2. For 
comparison, the normal-hearing data are shown 
by dashed lines. The line indicating the loudness 
perception ’very soft’ represents sounds just above 
the threshold and therefore approximates the shape 
of the hearing threshold. It can be observed that 
the hearing impaired person suffers from a high 
frequency hearing loss, i.e. low frequencies are 
perceived normally while an elevated threshold is 
found for higher frequencies (right panel). Such 
a shape is typically observed in age-related or 
noise-induced hearing losses. Compared to the 
normal-hearing data, the loudness perception of 
sounds close to threshold is clearly modified in 
the high-frequency region, i.e. higher hearing 
levels are needed to produce the same loudness 
sensation. For louder sounds, however, this is not 
the case. For example, the contour representing a 
’loud’ perception is very similar for the normal-
hearing and the hearing-impaired listener. The 
hearing levels at which sounds are perceived as 
’very loud’ are even lower for the hearing-impaired 
person. This reduced dynamic range results in the 
phenomenon called loudness recruitment, which 
describes the effect that loudness grows faster with 
level than normal for hearing-impaired listeners.

The perception of loudness in normal-hearing 
listeners and especially the loudness recruitment 
in hearing impaired have substantial consequenc-
es on acoustic communication. On the one hand, 
too loud sounds are uncomfortable to listen to and 
therefore have to be avoided. On the other hand, 
the effort to focus on audible but too soft sounds 
can be very tiring over longer periods. The gen-
eral goal of sound presentation is, therefore, to 
adjust the level to a reasonable, in most scenarios 
comfortable, listening level for both, normal and 
hearing-impaired listeners. Due to the steep growth 
of loudness in hearing-impaired listeners, already 
a minor deviation in level can lead to too loud or 
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too soft sounds. Communication situations can, 
therefore, be very annoying for people suffering 
from a sensorineural hearing loss, e.g. because 
constant manual adjustments of volume are 
needed. Naturally, this reduces speech intelligibil-
ity and quality in speech communication. As a 
result, increased hearing effort is required since 
parts of the speech are difficult to hear. The con-
sequences of a reduced communication quality 
can be considerable. During acoustic communica-
tion at work or in private, misunderstandings and 
misinterpretations may lead to reduced self-as-
surance, frustration, decreased productivity, re-
duced social activity, and even solitude or loss of 
working place (for an overview, see Shield, 2006, 
p. 61ff.).

Technical support for hearing-impaired people 
is therefore highly desirable, in particular in the 
field of acoustic human-computer interaction. 
Since the effects of hearing impairment are highly 
individual, an increased accessibility of acoustic 
interfaces requires personalized technology. The 
following section describes different technical 
approaches which can support acoustic human-

machine interaction for both normal-hearing and 
hearing-impaired people.

STATE-OF-THE-ART 
TECHNOLOGIES TO IMPROVE 
AND EVALUATE ACOUSTIC 
USER INTERFACES

A number of technologies exist to support acous-
tic communication, which are also applicable to 
human-machine interaction. This section describes 
different signal-processing approaches comprising 
enhancement of communication signals, applica-
tion of personalized algorithms and technical 
evaluation of communication quality. Despite the 
fact that all of these approaches are still subject 
to current research, the technologies that are 
already available offer a wide range of solutions 
for improved human-machine interaction. Basic 
principles, technical limitations and examples of 
ongoing research are presented for each field.

Figure 2. Equal-loudness contours of a normal-hearing (left) and a hearing-impaired listener (right). 
The lines indicate the levels of sounds perceived as equally loud as a function of frequency. In the right 
panel, the normal-hearing data are re-plotted as dashed lines for comparison
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Digital Signal Enhancement

As outlined in the introduction, the use of acoustic 
interfaces may be very difficult under adverse 
acoustical conditions due to background noise, 
acoustic echoes or reverberation for both normal-
hearing and hearing-impaired users. Part of the 
solution to such problems can be offered by signal 
processing strategies, which enhance the quality of 
the communication signal by acoustic echo can-
cellation (Hänsler and Schmidt, 2004; Goetze et 
al., 2005), de-noising (Ephraim and Malah, 1985; 
Huang et al., 2006) or dereverberation (Goetze 
et al., 2006; Habets, 2007; Goetze et al., 2008).

Figure 3 illustrates the principle challenges for 
human-machine communication, in which acous-
tic information is exchanged between the user and 
a computer system in a realistic, hands-free com-
munication situation. The signal containing the 
information is presented to the user via loudspeak-
ers, and the user can give spoken commands to 
the machine which are recorded by microphones. 
The signal processing unit removes disturbances 
from the signal and performs an analysis of the 
information contained, e.g. by automatic speech 
recognition (ASR). Note that the sound is picked 
up at a spatial distance from the speaker (non-
close-talk situation) by the microphones. On the 
one hand, this is convenient for the user since 
he or she does not need to wear the microphone. 
On the other hand, this microphone positioning 
leads to problems for the signal processing unit 
since the microphones are not directly located 
at the source of the sound signal. This leads to 
a substantially decreased signal-to-noise-ratio 
(SNR) compared to the use of a microphone that 
is placed e.g. close to the mouth of the speaker 
(close-talk scenario) (Huang et al., 2006). In 
modern work processes and communication 
systems, hands-free sound pick-up is a desirable 
way of human-machine communication, since it 
allows for more flexibility and multi-user input. 
The users can move freely and use both hands for 
other tasks. However, the signal is, furthermore, 

superimposed by acoustic echoes and reverbera-
tion caused by repeated reflections of the signal 
itself at the room boundaries like walls, floor and 
ceiling. The input signal for the human-computer 
interface coming from the human speaker is, thus, 
a combined signal comprising the desired speech 
signal, acoustic echoes, reverberation and ambient 
noise (see Figure 3), which may heavily reduce the 
quality of the received signal. Under such adverse 
acoustic conditions, automatic speech recognition 
systems have a considerably lower performance 
(see e.g. Mildner et al., 2006; Benesty et al., 
2008). Not only ASR-systems suffer from reduced 
speech quality. In telecommunication, the same 
challenges occur when information is sent from 
one place to another via acoustic user interfaces 
(Hänsler and Schmidt, 2004; Rohdenburg et al., 
2005). Without further processing, unwanted 
echoes, reverberation and ambient noise are trans-
mitted together with the desired speech signal. 
This is not only annoying and tiring for a human 
listener and disturbing for both, an ASR system 
and a human listener, it can also lead to a closed 
electro-acoustic feedback loop and, thereby, to an 
instable system producing howling. As outlined 
in the introduction, the resulting communication 
problems can be substantial for hearing-impaired 
users of such acoustic interfaces. Therefore, it is 
highly desirable to enhance the signal quality for 
human-machine interaction as well as for telecom-
munication systems.

Reduction of Ambient Noise

The removal of noise from the microphone signal 
is a particularly powerful technique when the 
spectral or statistical content of noise and speech 
signal differ or if the desired sound source and the 
undesired disturbance arrive from different direc-
tions. In many situations like factory workplaces 
(machinery noise), cars (noise from engine and 
tires) or open-office areas (ventilation, typing, 
printer noise, etc.), this condition is at least partly 
fulfilled, which offers a large potential for signal 
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enhancement using noise reduction schemes. 
Depending on the number of available micro-
phones, single-channel (Hänsler and Schmidt, 
2004; Ephraim and Malah, 1985) or multi-channel 
(Goetze et al., 2006; Bitzer and Simmer, 2001) 
noise reduction schemes can be applied.

Single-channel noise-reduction schemes esti-
mate the current SNR in several frequency bands 
within short time intervals of about 10 to 30 ms 
and calculate a suppression rule depending on that 
estimate. The suppression rule defines the amount 
of attenuation within each of the frequency bands 
of a given time frame. Thus, single-channel noise-
reduction schemes perform adaptive filtering of the 
signal aiming at suppressing the noise part while 
leaving the desired speech part unaffected. This 
leads to a high amount of noise reduction for low 
SNR, i.e. when the noise power is higher than the 
power of the desired signal. If the desired signal 
dominates the noise (high SNR) the noise reduc-
tion only slightly suppresses the signal. However, 
single-channel noise-reduction schemes always 
suppress both signals, the desired signal and the 
noise signal to a certain extend since both signals 
are picked up simultaneously by the microphone 

and none of the signals is available separately. 
Although the filter can be designed to mathemati-
cally perform the best trade-off in terms of noise 
reduction versus not affecting the desired signal, 
an unwanted side-effect of a good noise reduc-
tion is always a certain amount of cancellation 
of the desired signal component, which reduces 
the signal quality. Furthermore, state-of-the-art 
single-channel noise-reduction schemes still 
suffer from the so-called musical noise problem. 
Musical noise is caused by residual noise that is 
small in amplitude but clearly perceivable by a 
human listener since it sounds unnatural due to its 
non-stationary nature (Cappe, 1994; Rohdenburg, 
2008). Noise-reduction schemes incorporating 
models of the human auditory system (Gustafsson, 
1999; Goetze et al., 2006) partly avoid the musical 
noise problem and, therefore, lead to perceptually 
better results. This is achieved on one hand by ex-
ploiting the fact that noise parts that are below the 
hearing threshold are not perceived be the human 
listener and, thus, do not have to be suppressed. 
This provides more degrees of freedom to the noise 
suppression filter. On the other hand, distortions 
of the signals additionally can be hidden below 

Figure 3. Illustration of the acoustic difficulties in human-machine interaction. The speech signal of the 
machine is transmitted to the user and is disturbed by noise and reverberation, leading to decreased 
speech intelligibility. In addition, the signal of the loudspeaker feeds back into the microphone and su-
perimposes the desired signal of the human speaker. Digital signal processing strategies, such as noise 
reduction and acoustic echo cancellation can help to considerably improve the signal quality and to 
avoid feedback in the system
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the threshold of hearing which leads to better 
sounding signals (Goetze et al., 2006) as well as 
increased performance of ASR systems (Mildner 
et al., 2006). Thus, for communication systems as 
well as for human-machine interfaces in general 
the use of models of the human auditory system 
increases the performance of technical systems.

If more than one microphone is available, so-
called beamformers can be applied that exploit 
spatial information about desired sound source 
and ambient noise. Beamforming microphone 
arrays (Monzingo and Miller, 1980; Bitzer and 
Simmer, 2001) and their extensions by multi-
channel post-filters (e.g. Simmer et al., 2001; 
Goetze et al., 2006) work similar to the binaural 
hearing system. They exploit information about the 
position of the desired sound source by spatially 
sampling a given sound field at multiple positions 
using multiple microphones. By this, the digital 
filter is capable to enhance the signal using the 
level and phase differences. Ambient noise can 
in principle be suppressed without affecting the 
desired signal part (Bitzer and Simmer, 2001). 
Since beamforming microphone arrays rely on 
knowledge about the position of the desired 
source, this information has to be obtained first 
by approaches for direction-of-arrival estima-
tion (Knapp and Carter, 1976; Doblinger, 2006; 
Rohdenburg et al., 2008).

Acoustic Echo Cancelation

As depicted in Figure 3, in addition to ambient 
noise, also acoustic echoes stemming from the 
signal uttered by the loudspeakers are picked up 
by the microphones. The cancellation of acoustic 
echoes seems to be much easier at a first glance, 
since knowledge about the signal to be canceled out 
(i.e. the loudspeaker signal) is available. However, 
not exactly the loudspeaker signal is picked-up 
by the microphones again, but a signal changed 
by numerous reflections within the room. Thus, 
the influence of the room, which can be charac-
terized by the so-called room impulse response, 

has to be estimated for an exact compensation. 
Unfortunately, this compensation leads to a high 
computational load that may be too high even 
for nowadays computers for a real-time process-
ing (Hänsler and Schmidt, 2004). Here, two step 
approaches that cancel only parts of the acoustic 
echoes and suppress the remaining parts by ad-
ditional filtering similar to noise-reduction filters 
can be applied (Goetze et al., 2005). Again, ap-
proaches that exploit models of the human auditory 
system lead to perceptually better results for both 
human listeners (Gustafsson, 1999; Goetze et al., 
2006) and human-machine interfaces (Mildner 
et al., 2006).

Dereverberation

As obvious from preaches in churches, high 
amounts of reverberation decrease speech in-
telligibility (see e.g. Duquesnoy and Plomp, 
1980). Also the performance of acoustic signal 
processing schemes like multi-channel position 
estimation, noise reduction or automatic speech 
recognition (Monzingo and Miller, 1980; Huang 
et al., 2006; Doblinger, 2006; Rohdenburg et al., 
2008) is significantly decreased by reverberation. 
Hence, it is desirable to reduce reverberation from 
acoustic signals. Since reverberation is caused by 
the influence of the acoustic environment (the 
room) that is characterized by the room impulse 
response. the most straightforward approach is 
to invert this impulse response (Neely and Al-
len, 1979). However, due to the signal-theoretic 
properties of common room impulse responses 
this is not easy to achieve technically and such 
system have difficulties working in real-world 
systems (Goetze et al., 2008). Another approach 
is to estimate the part of the signal that does not 
contain reverberation and separate it from the 
reverberant part (Habets, 2007). This approach 
leads to digital filters that try to suppress the 
reverberant part similarly to the noise reduction 
filters described above. It should be noted that 
more than the previously discussed technologies, 
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dereverberation schemes are topic of currently 
ongoing research (Habets, 2007; Hänsler and 
Schmidt, 2008; Naylor and Gaubitch, 2010) since 
a perceptually satisfying solution is hard to find. 
However, first practically feasible approaches exist 
that enhance the quality of a reverberant signal 
as a pre-processing for either a technical system 
or for the human listener (Naylor and Gaubitch, 
2010). First approaches to incorporate models of 
the human auditory system for dereverberation 
exist that, again, lead to perceptually much better 
results (Mertins et al., 2010).

Acoustic Event Detection 
and Classification

Humans have an astonishing ability to automati-
cally detect and classify single acoustic events that 
are important in a specific situation and to associate 
them with certain phenomena. Hence, our audi-
tory system plays a major role in identifying e.g. 
critical situations and in providing orientation in 
everyday life. Similarly, technologies for acoustic 
event recognition aim at monitoring the environ-
ment, e.g. for intrusion detection by identifying 
breakage of glass, or at monitoring systems, e.g. 
by recognizing machine failures. Acoustic event 
recognizers typically separate acoustic events 
from background noises before classification. 
For that purpose, one or more microphones 
continuously record the surrounding sound. Cur-
rent approaches again are based on mimicking 
the sound pre-processing of the human hearing 
system (van Hengel et al., 2009). The result of 
this pre-processing is a so-called cochleogramm 
which describes the spectral and temporal energy 
distribution of the signal similarly to the process-
ing within the inner ear of humans. On the basis 
of threshold transitions relative to the background 
sound energy, the detector identifies events which 
are further analyzed by the classifier. In a training 
phase, classes of representative cochleogramms 
are derived from a low number of training data. 
These representative cochleogramms are com-

pared by the classifier to the incoming events 
and a report is given when a specific event is 
detected. Acoustic event recognition can also be 
used to support human machine interaction by 
providing additional information on the recent 
situation underlying the interaction or by invoking 
an alarm when certain events are recognized (van 
Hengel and Anemüller, 2009). Despite improved 
acoustic conditions and signal quality by means 
of the technologies described above, there may be 
situations for hearing-impaired (and also normal-
hearing) people, in which acoustic communication 
is extremely difficult. Such problems have also 
been identified in non-occupational contexts and 
technical solutions have been developed, in par-
ticular in the field of ambient-assisted living (van 
Hengel and Anemüller, 2009). These solutions are 
not restricted to their original applications, and the 
developed concepts like robust speech recogni-
tion for human-machine interfaces and acoustic 
event detection may find applications also in 
modern workplaces (Rennies et al., 2009a) and in 
domestic and health sectors (van Hengel and Ane-
müller, 2009). Acoustic events indicating alarms, 
incoming messages, or operational elements of 
machinery may be hard to hear, particularly for 
hearing-impaired persons. But even if these events 
are audible, the localization or classification of 
the events may not be possible or error-prone. 
Automatic acoustic event detection can support 
the hearing-impaired person, giving indications 
about the type of signal, its direction and intensity. 
Examples range from indicating critical alarms at 
work places, detection of a ringing door bell, an 
over boiling in the kitchen to automatic detection 
of critical situations like yelling of patients, e.g. 
in nursing homes.

Personalized Signal Processing

Additional benefit for hearing-impaired users, as 
well as for normal-hearing people having special 
listening requirements, can be expected if commu-
nication devices are fitted to their individual needs, 
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i.e. adjusted to the hearing loss, requirements and 
preferences of the individual user (Appell et al., 
2007; Baumgartner et al., 2009; Rohdenburg et 
al., 2009). Such personalized hearing systems 
partly cover the functionality of a hearing aid, 
which may not be available for the user, or which 
may be impossible to wear at certain conditions 
(e.g. in combination with hearing protectors or 
helmets). Personalized algorithms account for 
the reduced dynamic range (cf. Figure 2) by 
nonlinearly mapping the sound energy into the 
remaining audible range. The modified loudness 
perception can, thus, be partly compensated, which 
facilitates communication for hearing-impaired 
users. As already mentioned, hearing-impaired 
people understand speech only if the level of soft 
sounds is increased. Thus, these sounds have to 
be amplified by the supporting system. However, 
since a higher sound level leads to an unpleasantly 
loud perception for sounds that already have a 
loud level, these sound must not be amplified 
further, because hearing-impaired people typically 
perceive loud sounds similarly as normal-hearing 
people (see Figure 2) and a level increase at high 
sound input levels leads to a uncomfortably loud 
sensation. Thus, the dynamic range of a normal-
hearing person has to be compressed to the dy-
namic range of the hearing-impaired person as 
depicted in Figure 2 (Appell et al., 2002). Figure 4 
illustrates the concept of dynamic compression. In 
this example, loudness was measured for a sound 
at a frequency of 3 kHz by means of categorical 
loudness scaling. Using this method, the sound is 
presented at different sound pressure levels (dB 
SPL) and the listeners have to indicate the loud-
ness on a categorical scale ranging from inaudible, 
soft, medium and loud to too loud (for details, see 
Brand and Hohmann, 2002). Circles in Figure 4 
indicate the individual data points measured with 
the hearing-impaired listener, i.e. the categories 
indicated by the listener for the sound presented 
at a certain level. The solid line is a curve fitted 
to the data. The dashed line represents a reference 
curve of normal-hearing listeners. It can be seen 

that the curve for the hearing-impaired listener 
is steeper than for the normal-hearing reference, 
which reflects loudness recruitment. The horizon-
tal distance between the two curves represents the 
level difference that is needed to produce the same 
loudness sensation for the hearing-impaired as for 
the normal-hearing person. The arrows indicate 
that this level difference is much higher for softer 
sounds than for louder sounds. This means that 
in order to compensate for the modified loudness 
perception of the hearing-impaired person, a larger 
amplification is needed for softer sounds than for 
louder sounds, i.e. that a compressive amplifica-
tion is needed. The example in Figure 4 illustrates 
the need for compressive amplification only for 
a single frequency, while the effect of hearing 
impairment on loudness perception generally 
depends on frequency (see Figure 1). Therefore, 
different amplification rules apply for different 
frequency regions. Provided with this informa-
tion, personalized signal-processing strategies 
can compensate for the individual loudness per-
ception of hearing impaired persons and thereby 
substantially improve acoustic communication.

Technical Evaluation of 
Communication Quality

Although speech communication is the most natu-
ral and convenient way of information transmis-
sion, the use of multi-modal information may be 
desirable in certain situations, e.g. when acoustic 
conditions are difficult. In such cases, additional 
visual, tactile or text-based information could be 
given to the user. In order to detect such difficult 
acoustic situations, an automatic monitoring of 
the acoustic conditions is required.

The most important indicator of the quality in 
acoustic human-machine interaction is whether 
speech can be understood properly or not since 
the primary goal is the transmission of informa-
tion. To evaluate communication with respect to 
speech intelligibility, it is - ideally - measured 
experimentally using the same people normally 
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using the interface as test listeners. To ensure com-
parability, exactly the same conditions as typically 
encountered should be ensured. Several tests were 
developed, which are in principle able to yield 
exact estimates of speech intelligibility (see e.g. 
Wagener et al., 1999a,b,c; Sukowski et al., 2009). 
Naturally, such measurements involving real sub-
jects are impracticable due to their high costs and 
long durations, and cannot be used for continuous 
monitoring. Therefore, several technical methods 
were developed to predict speech intelligibility for 
given physical boundary conditions. Standardized 
models such as the Speech Intelligibility Index 
(SII, ANSI, 1997) or the Speech Transmission 
Index (STI, IEC, 1998) are widely used in research 
and applications. The general principle of these 
models is to compute a ratio between the desired 
speech energy and the unwanted noise energy 
(signal-to-noise ratio). As shown in a simplified 
way in Figure 1, individual speech fragments 
mainly contain different frequency components. 
Accordingly, some frequency regions contribute 
more to speech intelligibility than others. The 
models account for this dependence by weighting 
the energy ratios in different frequency regions 
according to their importance for speech recogni-
tion. Additionally, other detrimental effects can be 

included in the predictions, like e.g. the influence 
of reverberation or band-limiting transmission 
systems. Figure 5 illustrates the basic principle 
of speech intelligibility prediction. The speech 
intelligibility model requires the speech signal 
to be transmitted and information about the user 
(e.g. type and degree of hearing impairment), the 
environment (e.g. room acoustics) and the context 
(e.g. current noise sources) to compute an estimate 
of the current speech intelligibility. In general, 
speech intelligibility models such as SII or STI 
calculate an index with a value ranging from 0 
(completely unintelligible) to 1 (fully intelligible). 
Intermediate values can be transformed into other 
measures of speech intelligibility, e.g. the percent-
age of correctly understood words or sentences.

In principle, these models are able to predict 
the influence of external acoustic conditions and 
can, therefore, be used to technically evaluate the 
quality of acoustic human-computer interaction. 
Naturally, this concept relies on a trustworthy 
estimate of speech intelligibility based on the 
available information. While the standardized 
models (SII, STI) successfully account for the 
effects of background noise, reverberation and an 
elevated hearing threshold, other important factors 
are not included in their calculations. Under cer-

Figure 4. Derivation of amplification rules based on loudness scaling data of a hearing-impaired person. 
Fitted loudness scaling data are shown for a normal-hearing (dashed) and a hearing-impaired person 
(solid). Circles indicate the measured data of the hearing impaired. Arrows represent amplifications that 
would lead to the same loudness perception for the hearing-impaired listener as for normal-hearing person
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tain conditions, this may lead to wrong predictions, 
which limits the models’ applicability. Current 
research focuses on the development of more 
generally applicable models taking account of 
other relevant aspect like temporally fluctuating 
noises (e.g., Rhebergen and Versfeld, 2005; 
Meyer et al., 2007), spatial distributions of dif-
ferent speech and noise sources (e.g., Beutelmann 
and Brand, 2006; Rennies et al., 2010a) or other 
relevant aspects of hearing impairment beyond 
an elevated threshold (e.g., Jürgens et al., 2009).

Apart from speech intelligibility, other factors 
also affect the quality of acoustic signals and 
a technical assessment of these aspects is very 
helpful to evaluate acoustic communication. It 
was discussed in the previous section how loud-
ness perception contributes to communication 
in normal and impaired hearing. As for speech 
intelligibility, a number of models already exist, 
which transform a physical sound signal to a 
predicted loudness quantity (e.g. Moore, 1996; 
DIN, 1991; Moore et al., 1997; Zwicker and Fastl, 
1999; Chalupper and Fastl, 2002; ANSI, 2007; 

Moore and Glasberg, 1997, 2007). For many 
physical signals, this quantity relates very well 
to the loudness perception of real listeners, and 
even the modified loudness perception resulting 
from hearing impairment is taken into account 
by some models (Moore et al., 1997; Chalupper 
and Fastl, 2002; Appell, 2002). However, so far 
some aspects remain unaccounted for. For ex-
ample, measurements have shown that very short 
sounds highly contribute to the overall loudness 
perception even though their physical energy is 
small. Therefore, the technical prediction of the 
currently standardized models (DIN, 1991; ANSI, 
2007) will deviate from the real loudness percep-
tion when such signals are considered, which may 
be the case e.g. in machinery noise. Therefore, 
ongoing research aims at the improvement of the 
existing loudness models, focusing on the special 
influence of short and quickly fluctuating sounds 
(e.g., Rennies et al., 2009b, 2010c; Rennies and 
Verhey, 2009) or the effect of binaural listening 
(e.g., Moore and Glasberg, 2007).

Figure 5. A model of speech intelligibility can combine information about the user, the acoustic envi-
ronment and the context to estimate how well the user is able to understand acoustic information in the 
given situation. This estimate can be used in monitoring, planning and improvement of human-machine 
interaction
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In conclusion, current models of speech intel-
ligibility and loudness provide a way to detect 
and quantify difficulties in acoustic communica-
tion. While some relevant factors influencing 
speech quality are still investigated and current 
models do not include all of these factors, the 
available models account for the most important 
aspects such as background noise, reverberation 
and hearing threshold. In the context of acoustic 
human-machine interaction, the benefit of using 
such models can be twofold: on the one hand, 
they can be used in planning and design phases 
of interfaces to ensure good communication qual-
ity based on simulated acoustic conditions. On 
the other hand, they can be used to continuously 
monitor acoustic conditions in the environment in 
which the interface is used. In case of bad acoustic 
conditions, further processing strategies or other 
modalities can be used to ensure that the desired 
information is perceptible.

Such an integrative approach of combined 
acoustic monitoring and signal enhancement 
strategies is outlined in the following section. A 
concrete example of continuous communication 
quality monitoring is given subsequently.

TOWARDS A HEARING 
PERCEPTION MODEL FOR 
ACOUSTIC USER-INTERFACES

In the previous section, several separated tech-
niques for the enhancement and evaluation of 
acoustic human-machine interaction have been 
described. These technologies focused on differ-
ent aspects ranging from speech communication 
to acoustic event detection. This section extends 
these individual approaches towards an integra-
tive and comprehensive model-based concept 
for design and application of human-machine 
communication. Thereby, the central question is 
how acoustic interfaces can be enabled to support 
the individual requirements of different users, i.e. 
individuals having hearing deficiencies, or normal-

hearing users asking for a reduced listening effort 
in acoustically adverse conditions.

In principle, each of the methods described in 
the previous section receives and processes input 
signals and parameters to compute its output. 
For models predicting speech intelligibility, this 
concept is exemplarily shown in Figure 5. The 
model combines information on the user, the 
recent context, and the environment to calculate 
an estimate of the speech intelligibility. Noise 
reduction schemes partly use similar information. 
They calculate an enhanced speech signal and, 
to do so, require knowledge about the relevant 
information to be transmitted and the acoustic 
context (e.g. signal statistics of background noise, 
position of desired speaker, etc.). Methods for 
echo cancellation and dereverberation focus on 
sound quality improvements by compensating for 
adverse environmental conditions (e.g. reverbera-
tion, closed feedback loops) and lead to better 
results if they are based on models of the human 
auditory system. Personalized signal processing 
strategies require data of the user himself as input, 
e.g. of the individual hearing loss or listening 
preferences. It was discussed above that such an 
individualized signal processing would be very 
beneficial for people suffering from hearing de-
ficiencies. In practice, however, it is not possible 
to measure each aspect of the individual hearing 
loss and preferences relevant for speech com-
munication and acoustic interaction before the 
user can handle the respective communication 
and interaction systems. Therefore, informa-
tion on the individual user has to be acquired 
and provided in a simplified way. This can be 
achieved by computational models, which mimic 
the perceptual characteristics of an individual 
user. Naturally, improvements of acoustic user 
interfaces based on models can only be achieved 
if the models take the relevant aspects of hearing 
perception into account. For example, the age of a 
user can be a first approach to describe his hearing 
abilities since, in general, hearing deficiencies 
increase with age. As shown in Figure 1, an av-
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erage hearing loss can be computed on the basis 
of the age (ISO, 1990). However, the individual 
vulnerability to hearing loss varies substantially. 
The data shown in Figure 1 are median values, 
i.e. half of the people included in the studies on 
which the calculations are based have a larger 
hearing loss. The spread of the hearing losses can 
be demonstrated by looking at percentiles other 
than the median value. For the group of 65-year 
olds (curve indicated by diamonds in Figure 1), 
the median hearing loss is about 49 dB at a fre-
quency of 8 kHz. For comparison, the 80th and 
20th percentiles are at about 27 and 76 dB HL. 
This means that, for the same age, a large range 
of hearing losses has been observed. Therefore, 
in most of the cases, age alone hardly represents 
the individual perception and would lead to wrong 
conclusions if prerequisites of acoustic user inter-
faces were derived from it. Given the difficulties 
to generalize hearing losses over larger groups of 
individuals, a better source of information about 
hearing perception is the audiogram of an indi-
vidual user. An acoustic user interface provided 
with this information could predict audibility of an 
acoustic output signal over frequency and, hence, 
could react accordingly by providing additional 
amplification to the output signal. Although the 
incorporation of individual audiogram information 
is already a major step towards individualization 
of acoustic user interfaces, it has to be noted that 
the pure use of audiogram information can lead 
to wrong conclusions about the requirements of 
acoustic user interfaces. As mentioned above, 
the individual perception of loudness can also be 
considerably influenced by the individual kind of 
hearing loss. Therefore, a ’blind’ amplification of 
sound signals without knowledge of the individual 
level at which sounds become too loud may lead 
to uncomfortably loud levels. Thus, measuring 
this uncomfortable level in addition to the hear-
ing threshold provides an estimate for the entire 
dynamic range at which sounds can be presented 
to a user of an acoustic user interface. In audio-
logical practice, the individual dynamic range is 

measured using sounds of very limited frequency 
content, e.g. pure tones (containing only a single 
frequency) or narrow bands of noise (Kollmeier, 
1992). However, most natural sounds including 
speech are highly complex and consist of many 
time-varying frequency components. This means 
that even when the narrowband dynamic range of 
a user is known, many other aspects may affect 
his acoustic communication, e.g. his ability to 
understand speech in noise or to process tempo-
ral fluctuations, or his attention, motivation or 
lexical skills. As a consequence, people with a 
similar hearing threshold and uncomfortable level 
can have significantly different performances in 
speech recognition tasks.

These various factors contributing to speech 
intelligibility are still subject to research and 
are not fully understood yet. Consequently, no 
existing model can fully describe the individual 
perception of sounds. However, in the context 
of acoustic user interfaces, models incorporat-
ing the most important aspects of hearing can 
significantly improve the accessibility, not only 
for people with hearing deficiencies. Such hear-
ing perception models need to be embedded in a 
general framework combining information about 
the user (as described above) and the acoustic 
context and environment. By estimating the rel-
evance of this information for hearing perception, 
the model can provide important input to develop 
and control personalized and adaptable acoustic 
user interfaces.

An exemplary realization of how such a model-
based approach could be used to personalize and 
adapt user interface is shown in Figure 6. The task 
of the interface is to transmit acoustic information 
to a user. A model estimates speech intelligibility 
on the basis of data about the acoustic environment 
and context, and about the user. In this example, 
only very general information is available. The 
acoustic environment is a living room with a 
’typical’ reverberation time. The current acoustic 
context consists of a single noise source placed at 
the left side of the user, while the user is assumed 
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to receive the desired information from the front. 
As an example, the disturbing source at the left 
of the user could be an active loudspeaker (e.g. 
of a hi-fi system) acting as a disturbance for the 
acoustical sound information that is played back 
e.g. by the television in front of the user. The 
hearing capability of the user is modeled based on 
the mean expected hearing loss of a 65-years old 
person that can be taken from Figure 1. Provided 
with this information the model calculates the 
expected speech intelligibility for different SNR 
configurations. In the example shown in Figure 
6, the model presented by Beutelmann and Brand 
(2006) was used to predict speech intelligibility. 
The result is shown as a solid line in the right 
panel of Figure 6. As expected, the predicted 
speech intelligibility increases with increasing 
SNR. Since the level of external noise sources 
generally cannot be modified by the acoustic 
interface, better SNR can only be realized by a 
level increase of the speech to be presented by the 
acoustic interface. Based on a predefined threshold 
of intelligibility and a corresponding SNR value, 
the interface can now calculate the amplification 
of the speech signal required to achieve that SNR. 

In the example shown in Figure 6, the threshold 
for good intelligibility was set to an index value 
of 0.75. This corresponds to an SNR of about 4 
dB, as indicated by the dotted line in Figure 6. The 
model-based instruction for the interface would 
therefore be to present the acoustic information 
at least 4 dB above the noise level in order to 
ensure good speech intelligibility. This example 
is meant to be an illustration of the possible 
applicability of speech intelligibility models in 
acoustic user interfaces. It shows that, in general, 
current models can be used to derive technical 
instructions for acoustic interaction between 
humans and machines. As outlined above, age 
alone is hardly a representative indicator of the 
user’s hearing deficiencies. Individual data as e.g. 
provided by the audiogram or loudness perception 
measurements should be used instead to enable a 
higher degree in the personalization of acoustic 
user interfaces. Depending on the desired field 
of application, acoustic data about environment 
and context can often already be estimated in the 
planning phase of acoustic interfaces by commonly 
used room acoustic simulation software (Allen and 
Berkley, 1979), or can be measured at existing 

Figure 6. A model of speech intelligibility used to derive instructions for an acoustic user interface. The 
model estimates speech intelligibility based on the given acoustic environment and data as well as on 
information about the user
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environments with relatively low effort (MacWil-
liams and Sloane, 1976; Rife and Vanderkooy, 
1989; Vanderkooy, 1994; Müller and Massarani, 
2001; Pintelon and Schoukens, 2001). Similarly, 
the information about the individual user can be 
estimated, for example based on age (ISO, 1990), 
or it can be measured with standard audiological 
techniques. For a given acoustic environment and 
context, the entire range of estimated (or real) 
hearing losses can be used to compute predicted 
speech intelligibility. This way, an easy detection 
of acoustically problematic conditions can be 
achieved already in planning phases of acoustic 
human-machine interaction. By variations of the 
environment and context data, the benefit from 
acoustic modernizations like additional damp-
ing, less noisy machinery, or signal enhancement 
strategies can be estimated.

The incorporation of hearing perception mod-
els for better individualization of sound output is 
obviously applicable in many scenarios, like phone 
and teleconferencing conversation, communica-

tion in cockpit or in technical systems providing 
information by speech output. Also multi-modal 
user interfaces are enabled for more individualiza-
tion and adaptability when hearing perception 
models are embedded in respective software ar-
chitecture for multi-modal user interfaces. Such 
a concept is schematically shown in Figure 7. The 
interface is used to transmit information to a user. 
This information may be of general kind or depend 
on the current application. A model of hearing 
perception is the core element in the schematic 
design. It predicts individual hearing perception 
based on the individual user data, as well as on 
information of the acoustic environment and 
context. Thereby, it can provide an estimate of 
how personalized audio signal-processing strate-
gies as described in the previous section can in-
crease the quality of the acoustic information for 
the user. The prediction of the model is transferred 
to an output controller, which manages the ac-
tual multi-modal presentation of information to 
the user. Depending on the achievable quality of 

Figure 7. Schematic structure of a personalized and adaptable acoustic user interface. The core element 
is a hearing perception model, which predicts the potential difficulties in acoustic communication and 
provides input for signal-processing strategies and information output, which is managed by an output 
controller also considering other modalities to present information to the user
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the acoustic presentation, as estimated by the 
hearing perception model, the output controller 
initializes the information presentation in an 
acoustic way or, if the potential acoustic presen-
tation is not suitable for the user in his or her 
current environment and context, by means of 
other modalities like for example light or text 
output. This interaction between user and machine 
can be adjusted by defining interaction rules and 
providing them to the output controller to optimize 
accessibility. A schematic as shown in Figure 7 
represents a concrete realization of an adaptable 
and personalized architecture of acoustic user 
interface. The general concept of incorporating 
individualized human perception modeling is 
principally also applicable to other senses and 
types of impairments such as e.g. visual deficien-
cies or a reduced mobility, provided adequate 
models can account for the relevant aspects in the 
context of human-computer interfaces. The com-
bination of human perception models for different 
senses and disabilities would lead to an even more 
holistic approach for personalization and adapt-
ability of human-machine interaction. The hearing 
perception modeling approach described here 
already enables personalization and adaptability 
in acoustic user interaction. This is particularly 
relevant since the demand of human-machine 
interaction increases in many fields of modern 
societies, while, at the same time, the portion of 
hearing-impaired persons will grow dramatically 
(Shield, 2006).

The concept of personalization and adaptabil-
ity addressed in theory in this section is illus-
trated by potential applications and scenarios 
incorporating hearing perception models in the 
following section.

APPLICATIONS

This section aims at illustrating the concepts de-
veloped in the previous sections. As mentioned 
in the introduction, adaptable and personalized 

user interfaces are not widely spread yet. The 
following examples can be considered as first 
steps towards achieving this goal in the field of 
acoustic communication.

Automatic Monitoring of 
Communication Quality

As described above, a model of speech intelligibil-
ity can be used to adjust acoustic user interfaces 
according to the current acoustic conditions and 
needs of the user (see Figure 6). Today, predic-
tions of hearing perception models are typically 
calculated offline. However, in practical applica-
tions like telecommunication systems or human-
machine interfaces it is important that estimates 
of the quality of acoustic communication are 
calculated during runtime. Particularly in tele-
conferencing situations the speaker is not aware 
of low intelligibility at the distant listener. With-
out technical support the listener needs to make 
constant inquiries which can considerably disturb 
the communication. Therefore, we developed a 
hearing-perception model based method that con-
tinuously monitors the acoustic conditions with 
respect to intelligibility (Rennies et al., 2010b). In 
case low intelligibility is observed by the model, 
the speaker can be informed enabling him to take 
respective actions (e.g. to move the microphone 
to a better position). The same approach is ap-
plicable to human-machine interfaces to estimate 
the benefits of different sound processing schemes 
or to select amongst different output modalities.

An example of such a monitoring process 
is illustrated in Figure 8. Speech intelligibility 
was estimated using the STI (IEC, 1998) as a 
function of time. The data were simulated using 
continuous speech from the Oldenburg sentence 
test (Wagener et al., 1999a) as the desired sig-
nal, superimposed with an undesired continu-
ous noise. The noise had the same spectrum as 
speech, mimicking a disturbing conversation in 
the background. A reverberation typical for office 
rooms was included in the simulations. Initially, 
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the speech was superimposed by a background 
noise of relatively low level at an SNR of 15 dB, 
resulting in acceptable speech intelligibility. After 
20 s, the SNR was lowered to 0 dB. In practice, 
such a reduction in SNR could occur when an 
additional noise source is switched on. After 40 
and 60 s, the SNR was changed to 5 and 15 dB, 
respectively, corresponding to a stepwise reduction 
of the effect of the additional noise source. The time 
instances when the changes in SNR were made are 
indicated by vertical dashed lines in Figure 8. As 
indicated by the symbols, the STI was calculated 
at intervals of 2 s, based on (i) the estimated SNR 
alone (squares), and (ii) on estimations of both 
SNR and reverberation time (circles). For both 
calculation methods, the effect of SNR can be 
clearly observed: the predicted speech intelligibil-
ity is highest in the beginning and the end, when 
the SNR is 15 dB. Accordingly, it is lowest for 
an SNR of 0 dB and intermediate for an SNR of 
5 dB. The data also indicates slight variations in 
the predicted STI, even when the SNR is constant. 
This can be explained by two effects. On the one 
hand, the energy distribution of running speech 
varies over time, which leads to a time-varying 
SNR. On the other hand, the estimation of both 
SNR and reverberation time is based on statistical 
methods (Ephraim and Malah, 1985; Marzinzik 
and Kollmeier, 2002; Löllmann and Vary, 2008), 

which introduce fluctuations in the prediction. 
In particular at higher SNR, the estimated STI is 
lower, when the reverberation time is included in 
the calculation. This reflects the detrimental effect 
of reverberation on speech intelligibility. In gen-
eral, the estimation of reverberation characteristics 
becomes particularly important with increasing 
SNR and increasing reverberation times. Since 
reverberation may substantially influence speech 
intelligibility, it has to be accounted for within 
hearing perception models.

The data shown in Figure 8 have been col-
lected at intermediate sound pressure levels and 
under the assumption of normal hearing. It could 
be seen that even for normal-hearing people, the 
predicted speech intelligibility was quite low in 
adverse acoustic environment (i.e., at low SNR). 
For even lower speech levels and users with a 
hearing loss, the elevated hearing threshold would 
lead to an additional loss of speech information.

In conclusion, the monitoring system can 
account for the external acoustic conditions, but 
when such an estimation of speech intelligibility 
is used in real applications, the uncertainties as-
sociated with the estimation procedures have to be 
kept in mind. In general, the estimation of signal 
parameters such as SNR or reverberation time 
is more accurate when averages are made over 
longer periods of time. However, to allow for an 

Figure 8. Continuous estimation of speech intelligibility. The estimated Speech Transmission Index (STI) 
is shown as a function of time. The signal-to noise ratio (SNR) was 15, 5 or 0 dB as indicated by vertical 
lines for four periods of time. Circles represent data including an estimation of the reverberation time; 
squares indicate estimations based on the SNR alone
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acceptably fast detection of changes in the acoustic 
environment, the time frames used for averaging 
must not be too long. The simulations shown were 
based on intervals of 2 s, which might represent 
a reasonable compromise between estimation ac-
curacy and short update intervals. Further research 
is particularly needed to reduce estimation errors 
by balancing the effect of background noise and 
reverberation depending on the SNR. In practice, 
reverberation time could be estimated over longer 
periods since room acoustic parameters gener-
ally do not change quickly, while the SNR can 
vary substantially from one estimation interval 
to another, e.g. when a noise source is switched 
on. In combination with an acoustic user inter-
face, the information provided by such an online 
monitoring of speech intelligibility can be used 
to adapt the output modality or to control other 
processing strategies such as noise reduction (see 
previous section).

The application of perception models in 
human-machine interaction requires reliable 
and generally applicable model predictions. As 
discussed above, current research aims at improv-
ing existing models. For this purpose, we have 
developed a speech intelligibility prediction (SIP) 
toolbox, which comprises all standardized and 
several state-of-the-art models for speech intel-
ligibility and loudness prediction (see Kühler et 
al., 2010). The SIP Toolbox allows for an easy 
comparison of the different models and can sup-
port the choice of a particular model for a certain 
application, e.g. in the context of the monitoring 
of communication quality.

Personalized Hearing-
Loss Compensation in 
Consumer Electronics

Since consumer electronics and communica-
tion systems merge more and more into multi-
functional multimedia platforms, nowadays a 
strict differentiation between phone, PC or TV 
is not given any more. At the same time, these 

multifunctional systems can be personalized by 
individual graphical themes, ring tones or ad-
ditional applications - called apps, gadgets or 
plugins. If human-machine interfaces for persons 
with hearing problems are considered, a further 
personalization can be achieved by using a signal 
playback that is adapted to the specific prefer-
ences or needs of the user. Preferences like the 
sound of a system may be easy to adapt, e.g. by 
equalizers known from common hi-fi systems. 
However, if the compensation of hearing deficien-
cies is concerned, a special challenge lies in the 
adaptation of the sound to the hearing ability and 
hearing sensation of the individual user without 
involvement of professionals like audiologist, who 
normally help to adjust such systems as hearing 
aids (Appell et al., 2007; Baumgartner et al., 2009; 
Rohdenburg et al., 2009).

The research and development in the combi-
nation of conventional audio devices with medi-
cal hearing support leads to new solutions and 
applications to support people of all age groups 
and hearing deficiencies in various hearing situ-
ations. Systems like TV or telephones may, thus, 
be individualized and enabled to playback sound 
signals pre-processed in a way that increases the 
intelligibility of the content by incorporating the 
individual hearing loss as illustrated in Figures 1 
and 2. Hence, the authors worked on integration 
of supporting technologies for hearing impaired 
on a TV platform (Appell et al., 2007; Hearing At 
Home, 2010). Within this project an integration of 
audio-visual hearing-support technologies within 
a common digital TV/set-top-box was developed. 
This way, the acceptance barrier that has to be 
faced by conventional hearing aids was lowered 
to a minimum. Persons suffering from hearing 
losses sometimes refuse to wear hearing aids or 
are not even equipped with a hearing aid partly due 
to psycho-social factors that are associated with 
hearing loss like stigmatization, lack of comfort, 
cost or effort. This general acceptance problem can 
be tackled by applying supportive hearing technol-
ogy into (highly accepted) home-entertainment 
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devices, allowing the elderly people to participate 
in communication without using hearing aids (Ap-
pell et al., 2007; Rohdenburg et al., 2009). The 
fitting of such a supporting electronic device to the 
specific needs of the hearing-impaired person was 
investigated e.g. by Baumgartner et al. (2009). One 
suggestion for the interface of the fitting process 
was a simple sequence of test signals the users 
listened to and subsequently adjusted the volume to 
achieve a certain perception of these sounds (e.g. 
a comfortable listening level). A proper design of 
the test signals could extract the most relevant 
information about the individual hearing loss 
of the user without professional support. Such a 
system can even support persons suffering from 
mild hearing losses. In principle, personalized 
hearing aid technology can be introduced into 
any electronic device interacting with the user 
via acoustic signals as illustrated in Figure 9. 
The personalized hearing system, implemented 
e.g. in hearing aids, set-top boxes or telephones, 
controls the acoustic interaction between interface 
and application (e.g. television, public-address 
systems, video-conferencing, or speech recogni-
tion). Exemplarily, the described technologies 
for supporting people suffering from hearing de-
ficiencies have been integrated by the authors in 
different electronic devices, such as a television, 
a tele-conference system and an I-PhoneTM/I-Pod 
TouchTM for telephony and for listening to music 

or MP3s. Various other areas of application are 
possible wherever a hearing-impaired person is 
not equipped with a hearing aid or is unwilling 
to wear it. The developed algorithms for hearing 
support are computationally efficient and easily 
adaptable to all processor based electronic devices.

SUMMARY AND CONCLUSION

In this chapter, personalized acoustic interfaces 
for human-computer interaction based on models 
of the human auditory system were discussed 
and concrete realizations of such interfaces were 
introduced. The importance of personalized and 
adaptable user-interfaces is commonly accepted 
in the field of ambient assisted living and personal 
tele-health. The demographic change puts even 
more pressure on the development of accessible 
user interfaces also for people with impair-
ments. However, concrete realizations of such 
concepts are difficult to realize and the specific 
implementation often remains unclear partly due 
to the many degrees of freedom of personalized 
and adaptable human-computer interfaces. In 
the field of acoustic human-machine interaction, 
many technologies exist which can improve com-
munication. Several individual approaches were 
discussed which could be used to enhance the 
signal quality, use personalized signal processing 

Figure 9. Schematic usage of personalized hearing systems in acoustic human-machine interaction. 
Applications transmit and receive acoustic information, which is processed in the personalized hearing 
system for interaction with the user
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and can detect and quantify acoustically difficult 
situations. In combination, these approaches can 
significantly improve communication systems 
and human-computer interfaces, e.g. for speech 
input or individualized signal presentation. The 
key towards such a combined system including 
the different approaches is a hearing perception 
model. This model can transform information 
about the acoustic environment, the current acous-
tic context and the individual user into a predic-
tion of the user’s ability to communicate with 
the given system. This model-based assessment 
of individual communication quality can provide 
relevant information for control and adjustment of 
human-machine interaction. Thus, it represents a 
holistic approach towards adaptable and person-
alized acoustic interfaces for human-computer 
interaction. This concept can be considered as 
an example also for other modalities. This may 
be important since accessibility can be reduced 
due to a number of factors, many of which are 
more prevalent in older persons. In cases of vi-
sual impairment or a reduced mobility, the same 
approach could help to increase the accessibility 
of user interfaces. The crucial element of this ap-
proach is a perception model, which can reliably 
predict the individual abilities of the user based 
on a limited set of information.
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KEY TERMS AND DEFINITIONS

Adaptability: The property of an acoustic user 
interface to allow for different means of interac-
tion depending on the current context.

Audiogram: More specifically called pure-
tone audiogram. Indicates the level of pure tones 
needed to be just audible relative to a standardized 
normal-hearing population.

Cocktail-Party Effect: Ability of the hear-
ing system to separate different sound sources 
in a complex acoustic environment comprising 
different sound sources.

Dereverberation: The process of removing 
those parts of an acoustic signal that result from 
reflections of the sound at boundaries of an en-
closed space.

Dynamic Range: The range of levels between 
the threshold of hearing and the uncomfortable 
level. In most cases reduced in hearing-impaired 
persons.

Loudness Recruitment: Abnormal percep-
tion of loudness in consequence of a hearing loss. 
Typically, loudness of soft sounds increases faster 
with level than normal.

Noise Reduction: Also called de-noising. The 
process of removing unwanted signal components 
from an acoustic signal (e.g. machinery noise, 
driving noise, concurrent speech).

Personalization: Inclusion of information on 
the individual user (e.g. the individual hearing 
loss) in the processing of acoustic signals.


