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Abstract—This paper presents research carried out within the
EU FP7 EAR-IT project, which is working on the challenges of
bringing acoustic sensing intelligence to large-scale indoor and
outdoor wireless sensor networks, i.e. into two existing testbeds
out of the EU FP7 FIRE projects SmartSantander and Hob-
net. Besides the benefits by integrating machine-learning based
acoustic sensing technology, the general deployment approach
of the so-called Acoustic Processing Unit, an embedded device
whose capabilities go beyond state-of-the-art IoT sensors, as well
as the EAR-IT indoor and outdoor use cases are described.
This includes hardware qualification for the applications such as
energy efficiency of buildings, traffic monitoring and emergency
vehicle detection and tracking outdoor as well as acoustic emer-
gency detection for indoor environments and further, a detailed
description of the individual Acoustic Processing Unit software
components. Latest efforts and simulation results for acoustic
source localization using audio sensing technology for wireless
sensor networks are presented, indicating that a more intelligent
usage of the audio modality enables a wide range of applications
and services with high social and technological value.

I. INTRODUCTION

In the past few years, large-scale wireless sensor networks
gained a lot of attention due to their huge potential to en-
able innovative services and applications with high social,
technological and economic impact. Long-term research road-
maps laid out in this context following the Internet-of-Things
(IoT) concept investigate questions related to interoperability,
sustainability, communication infrastructure, data handling and
possibilities towards global and ubiquitous sensing by incorpo-
rating multimodal wireless sensors. This led to the deployment
of large-scale wireless sensor networks, so-called test beds,
throughout various cities or in buildings across the globe allow-
ing for use case development, hands-on experiments and the
integration and verification of real-life application scenarios.
Two important and powerful test beds - besides others - have
been established within the EU FP7 projects SmartSantader
[26] in the city of Santander, Spain for outdoor environments
and Hobnet [27] in the city of Geneva, Switzerland for indoor
environments. Wireless sensors of various kind have been
deployed already in the mentioned test beds, e.g. for measuring
light, CO2, humidity, etc., however, the potential benefit of
the audio modality remains widely un-investigated although
coming with obvious advantages.

Audio sensors are cheap, energy efficient and often easy
to deploy, do not depend on a line-of-sight (NLOS), allow for
omnidirectional sensing and are basically independent from
weather conditions and lighting situations. The advantage of
NLOS acoustic sensing compared to video cameras is its quasi-
independence from the sensor position, while providing the
possibility to see through obstacles and not being limited to
a certain viewing angle. This is important, as many sensors
may need to be added into the environment in order to have
a full coverage of the area of interest whereas one could use
much less sensors and less complex sensing solutions if deeper
incorporating the audio modality. The acoustic sensors (i.e.
microphones) are furthermore multipurpose by definition. They
not only capture relevant environmental information (through
the sound) and provide physical measures, e.g. loudness or
direction of sound, but also allow an identification of specific
events within the audio stream if equipped with a reasonable
amount of processing power. Hence, once deployed, its intel-
ligent sensing capability on a modular software level together
with communication capabilities makes them very interesting
devices also within the IoT context. With the increasing pro-
cessing power and networking capabilities of IoT end devices
nowadays, it is possible to exploit audio data for a broad range
of applications. Although the untapped value of audio data is
still to be revealed, research activities and projects already exist
on, e.g. energy efficiency [25], traffic monitoring applications
[6]- [7] and emergency detection for care environments and
hospitals [28], thus implying great potential on intelligent
audio based solutions to support a myriad set of applications.

The possibility and value to integrate intelligent audio
based technology into existing test beds is investigated in the
EU FP7 project EAR-IT [24]. There, two complementary areas
of use cases are addressed, namely outdoor and indoor use
cases, targeting applications like monitoring, security as well
as traffic and environmental control (see Figure 1). All use
cases make use of the audio modality on a low level (e.g.
loudness measures), on an intermediate level (acoustic events)
and on a high level (temporal modeling of events to get access
to contextual information) as well as the notification of this
information to the network. Over the course of the project, a
direct interaction between this new type of sensor and already
deployed IoT devices will be further investigated.
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Fig. 1. EAR-IT application scenarios

This paper presents current research and activities to com-
bine acoustic sensing technology with large scale wireless
sensor networks aiming to provide situation aware innovative
services potentially useful for indoor and outdoor environ-
ments. The paper is organized as follows. First, the general
research approach, its challenges and the EAR-IT use cases
are reviewed in Section II. In Section III, embedded processing
and sensor hardware qualification for the envisioned use cases
is presented, followed by a detailed description on the Acoustic
Processing Unit (APU) as a new device introduced to the
wireless sensor network in Section IV. This includes details on
the overall system design, audio signal preprocessing, acoustic
event detection, and statistical modeling and metadata gener-
ation using the APU. Afterwards, latest efforts and simulation
results for acoustic source localization using audio sensing
technology enhanced wireless sensor networks are presented
in Section V. The paper concludes with first related project
results and an outlook on future activities in Section VI.

II. ENHANCING WIRELESS SENSOR NETWORKS WITH

ACOUSTIC SENSING TECHNOLOGY

A. General Approach

In order to enhance existing wireless sensor networks
with acoustic sensing technology, we introduce a new set of
devices that go beyond the capabilities of the already deployed
sensors, the Acoustic Processing Units (APU). An APU is
a computational powerful embedded device, which is still
cheap and small and therefore, can be counted the IoT device
family. In general, it consists of a microphone unit and an
embedded processing board. Which components was chosen
for the envisioned use cases is evaluated in Section III. On
the APU, intelligent algorithms will analyze captured audio
data, perform pre-processing such as filtering and de-noising
where necessary and identify target acoustic events using
machine-learning based acoustic event detection algorithms.
Detailed information can be found in Section IV. The output
of the APU is capsuled into a predefined metadata container
which is sent over the network instead of raw audio data.
A server that holds an application modeling environment, i.e.
intelligent algorithms and processes, will allow to develop new
innovative services combining the new information coming
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Fig. 2. System overview of a smart acoustic-enabled object within the EAR-
IT project

from e.g. APUs and lower level IoT devices (e.g. Libellium
Wapsmotes, AdvanticSys motes) while offering the possibility
to modify the APUs to work together due to the availability
of bi-directional communication interfaces. Within EAR-IT,
the server will be used for data visualization, database han-
dling and controlling of the use case dependent peripherals.
Although the APU is a dedicated device at the current state
of the project (as indicated by Figure 2), it will become more
integrated within the IoT (wireless) network later on.

B. EAR-IT Usecases

1) Indoor Usecases: Environment and Comfort: Speech
command recognition functionality will be integrated to the
Hobnet test-bed via Acoustic Processing Units (APU) to
interact with the environment in a natural way. Here, a focus
lies on the comfort of the user. The APUs will be installed, e.g.
in the accommodation rooms or office environments and hold
a predefined speech vocabulary to interact with the environ-
ment, i.e. to control lighting, air-conditioning and heating via
speech commands. The recognized speech commands will be
transcribed into metadata and will be transmitted to a central
service platform. Unique identifiers of the sensor, time stamps,
etc. will provide the necessary basis of data to actively change
the environmental parameters in the desired areas. In a second
phase, already existing IoT sensors and their data will be taken
into consideration. The service platform will then be able to
fuse information from multiple sources to create a contextual
and also personalized user profile (define a modus and activate
it through a keyword) of the environment (in terms of preferred
temperature, humidity, brightness level, etc.). This could be
used to either prepare an environment for an end-user prior
to its arrival (if announced) to address for comfort, or to
automatically select the cheapest energy provider for a given
point in time.

Security & Monitoring: Acoustic event detection capabili-
ties will be integrated in the Hobnet infrastructure to account
for security and monitoring related applications. Research in
the past already revealed a high demand for these kinds of
application scenarios for care homes and hospitals [28], where
improved safety of the patient and a higher efficiency in resi-
dential and non-residential care are important issues. Similarly,
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the acoustic event detection functionality to be implemented
into an APU and to be integrated in Hobnet within the EAR-
IT project will inform personnel and staff about occurring
emergencies or at least provide them with additional contextual
information about a security related incident. Since Quality
of Service (QoS) in terms of data transmission delays, time
synchronization of sensor data coming from distributed sensors
are of high importance within this use case, the capabilities
of the existing Hobnet infrastructure will be investigated.
Furthermore, the tradeoff between end user privacy and benefit
of additional security related applications and their potential
will be investigated in this use case. In [12] a pre-processing
mechanism for acoustic event detection that is capable to
account for privacy concerns was already presented to tech-
nologically address this issue.

Energy Efficiency: In this use case, it will be investigated
how acoustic sensing can be used to detect the presence of peo-
ple and their approximate number within certain areas in the
buildings and potentially, distinguish between different actions
to create contextual information. Knowledge about related
services and applications coming from the EU FP7 project
S4ECoB [25] will be transferred to this use case. Detected
acoustic events in an office scenario like keyboards, phone
ringing, door open-close, speech, etc. indicate the presence of
end-users in a room or around a certain area. The events will be
forwarded to a centralized service platform and further fed to
a building management system. If no presence is detected over
a certain period of time, lighting, heating and air-conditioning
will be switched of automatically. This functionality directly
complements the Environment and Comfort use case, where
the end-user is able to adjust the environmental settings to his
needs via speech commands.

2) Outdoor Usecases: Audio Based Traffic Density Moni-
toring: The European Union makes a lot of effort to reduce the
environmental noise. Therefore, the EU Directive 2002/49/EC
[29] provides guidelines for the assessment and management
of environmental noise introduced by railways, aircraft and
traffic, which was found to be the main contributor to noise
pollution [32]. Studies in the past revealed that approximately
30% of the people exposed to environmental noise are annoyed
by aircraft noise, about 20% by road traffic noise and about
10% by rail traffic noise respectively, resulting in a decreased
quality of life, health, mood and increased stress levels [30].
Even though the World Health Organization (WHO) proposes
to limit the noise level to 55 dB(A) (serious annoyance),
about 44% of the population of the EU25 (over 210 million
people) were exposed to road traffic noise levels above this
limits and more than 54million people were exposed to noise
levels exceeding 65 dB(A) [31]. With the deployment of
wireless sensor networks in Smart Cities, new possibilities
towards traffic density monitoring and quantification became
possible. Currently, video cameras, seismic sensors, ultrasonic
detectors, inductive loops, magnetometers etc. are in use [26].
Unfortunately, these sensors do not take subjective factors
in terms of noise perception by people into account. Within
EAR-IT, the possibilities to incorporate the acoustic modality
into traffic density monitoring applications are investigated in
detail. Besides purely physical loudness level measures by
making use of the distributed wireless sensors already available
in the test bed, noise type classification, its quantification and
assessment on a subjective level using the APU becomes possi-

ble. By incorporating this new kind of information into existing
data management systems, the development of more reliable
noise maps incl. their historical progression become possible
and more robust parameters can be derived to intelligently and
adaptively steer traffic management systems, e.g. to actively
reduce noise pollution in a certain area and therefore, enable
applications with high social, economic and ecological value.

Emergency Vehicle Detection and Tracking: Besides Traffic
Density Monitoring, EAR-IT will further investigate the value
to identify specific acoustic events in an outdoor environment.
In particular, emergency vehicle sirens in cities are in the
focus of this use case. By using the acoustic event detection
functionality provided by the APUs to be deployed in the
wireless sensor network at a suitable spot, sirens will be
identified. Research conducted recently already showed that
machine learning based siren detection is possible for various
applications [6], [7]. Loudness measures provided by the al-
ready deployed acoustic sensors in the wireless sensor network
will complement this new type of information and enables
localization tracking of the emergency vehicle, i.e. its siren
across the urban area. This data can then be fed to a traffic
management system to actively steer traffic lights with the goal
to reduce the overall reaction time of official authorities in case
of an incident.

C. Challenges

Enhancing existing wireless sensor networks with acoustic
sensing technology is not straight forward and comes with
numerous challenges. In particular:

• analysis of the foreseen application scenario, identifi-
cation of all stakeholders and their individual require-
ments

• selecting suitable hardware equipment

• robust preparation of the equipment for the various
use cases, protecting them against environmental in-
fluences

• positioning of the sensors in the environment

• gathering of audio training material to develop models
for acoustic event detection

• interfacing the APU to the wireless sensor network
and establish a communication route with already
existing IoT devices.

• creating situational awareness based on the sensor data
on an application level.

• data handling and visualization in close conjunction
with the envisioned use cases.

III. HARDWARE QUALIFICATION

A. Embedded Processing Platform

To select a suitable embedded CPU as the processing
core for the APU, a benchmarking of different embedded
platforms was performed. For choosing a suitable APU system
architecture, three different benchmarks were used. As it is not
known at the time of the benchmarking if the final audio pro-
cessing can be distributed to different CPU cores, only single
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TABLE I. EVALUATED SYSTEMS FOR CPU PERFORMANCE TESTS

Board CPU Core #Cores Core Clock (MHz)

APF51 i.MX51 Cortex-A8 1 800
BeagleBoard AM3359 Cortex-A8 1 720
phyCore OMAP4430 Cortex-A9 2 1008
PandaBoard ES OMAP4460 Cortex-A9 2 1200
(Zotac ZD41) D525 Atom 2 1800
(PC) Q6600 Core 2 4 2400

core performance was measured in all benchmarks. Table I
introduces the platforms considered within the benchmark.

1) Generic performance test: To estimate the overall per-
formance of the selected embedded systems the generic bench-
mark nbench was chosen. nbench is designed to expose the
capabilities of a system’s CPU, FPU, and memory system.
It provides a summarized result for the fix point (Int-Idx),
floating point (FP-Idx) and memory bandwidth (Mem-Idx)
performance of the system under test. The nbench benchmark
was compiled using different tool chains and various compiler
optimization flags for each of the embedded boards. The best
result for each system was logged and is shown in Table II. To
allow a better comparison, the index numbers are normalized
to a CPU clock of 1 GHz.

2) Application Performance Test: In order to provide a
more realistic estimation of the required processing platform
performance, a test algorithm for acoustic localization [33] was
used. Using pre-recorded six channel 48 kHz audio data as
input, the position of a sound source was calculated. In order
to get a meaningful parameter for performance comparison
purposes of the different embedded platforms, the runtime
of the algorithm analyzing a 28 second piece of audio data
was measured. In Table II, the analyzed sample time divided
by the runtime of the algorithm is shown. Hence, a value
greater 1.0 means that on this system the algorithm is able to
perform the localization at least in real time. It is worth stating
that the localization algorithm consisted of un-optimized code.
Furthermore, the test conditions were very strict to emulate the
worst case computational scenario in EAR-IT.

3) IIR Filter and Level Normalization: As a third test, an
algorithm calculating a IIR filter after normalizing the input
signal was used. This benchmark also uses a pre-recorded
audio signal as input to make the results on the different
platforms comparable. In Table II, the number of algorithm
runs per second is shown.

4) Selected Hardware: The generic benchmark indicates an
approximately equal fixed point performance of the tested em-
bedded systems whereas floating point operations of Cortex-
A9 based CPUs show a significant performance gain over the
Cortex-A8 architecture. Using the Application Performance
Test and IIR Filter and Level Normalization as a reference,
this difference becomes even more prominent, as the audio
processing algorithms used herein heavily rely on floating
point mathematics, too. The reason for this performance gain
is the greatly improved floating-point unit of the Cortex-A9
CPUs (more registers, better cycles per instruction value).
However, the performance gain comes with higher prices.
Disregarding the significant performance advantage in floating
point calculations of the ARM Cortex-A9 architecture, we
consider the ARM Cortex A8 architecture as sufficient to
address the needs of EAR-IT, i.e. the BeagleBoard.

TABLE II. EMBEDDED PROCESSING PLATFORM BENCHMARKING

RESULTS

CPU Generic Performance App. IIR Filter
(Mem-Idx) (Int-Idx) (FP-Idx) Perf. & Norm.

i.MX51 5980 6125 980 0.3 12
AM3359 7050 6250 1815 0.5 28
MAP4430 6150 6250 7700 2.7 76
OMAP4460 7150 7000 8050 2.6 102
D525 5500 4050 4950 1.9 68
Q6600 10525 7250 13300 5.5 138

B. Microphones

In order to select suitable microphones for the purpose
of EAR-IT, one has to take the parameters robustness, price,
quality and the actual use cases into account. Within EAR-IT,
both in- and outdoor use cases are investigated. Hence, the
selected microphones should be robust against environmental
influences such as high humidity, wind and a wide temperature
range. Desirably, the selected microphones can be used in both
use cases in order to keep the effort in developing APUs in
large quantities low. At the same time, the microphones should
come in a decent quality such that the project outcome is not
limited due to poor hardware selection. Even if microphones
of superior quality in terms of bandwidth, dynamic, noise
floor, etc. are selected that go beyond the needs of the current
project, they might still be of high value for upcoming or
follow-up projects. Hence, investing into the test-beds from
a technological point of view may pay out later on and will
encourage the further use of the installed hardware and the
overall network. Obviously, the selected microphones should
be cheap, exchangeable and easily replaceable if necessary.
For the purpose of EAR-IT, three possible microphones have
been pre-selected.

1) tBone LC97: The tBone LC97 can be seen as a plug-&-
play solution for the needs in EAR-IT. Its frequency response
and dynamic is reasonably good for this price segment and
is affordable in large quantities. Although robustness may
be achieved by using a proper housing and a workaround
to use the anti-wind-foam, the tBone LC97 is specifically
made for indoor environments. Additionally, quality varies
heavily among the microphones of the same type, which makes
calibration difficult.

2) Sennheiser MKE23 Gold C: The Sennheiser MKE23
Gold C is a professional condensator microphone for live-
stage-usage. Its frequency response is highly linear, with a
large dynamic range and very low distortions. This microphone
is naturally protected from sweat and offers high reliability
and robustness also under harsh environmental conditions.
However, it is by far the most expensive miniature microphone
within this pre-selection and may not be a suitable choice for
large-scale deployments.

3) Shure MX183: Similarly, the Shure MX183 omnidirec-
tional condensator microphone is made for professional live-
stage-usage. Hence, frequency response, dynamic range and
distortions are excellent. The microphone package comes with
a dedicated preamplifier, manufacturer support and all connec-
tors necessary to integrate it into an APU with a reasonable
price. Hence, we decided to choose the Shure MX183 due to
the best tradeoff between cost and quality.
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IV. ACOUSTIC PROCESSING UNIT

As it was shown in the past, acoustic sensors in combi-
nation with appropriate signal processing strategies [1]- [5]
are able to detect, analyze and track various information in
in- and outdoor environments unobtrusively, such as sirens &
traffic noise [6]- [7], possibly dangerous situations [8], [9] or
the position of the user [10]. Hence, this research discipline
can bring high social value in form of innovative services to
the IoT community.

A. System overview

The EAR-IT approach towards acoustic event detection
consists of three major processing stages: 1) a pre-processing
stage to obtain low-level information about the input signal and
to derive suitable signal representations; 2) an event detection
stage to derive mid-level contextual information about the
audio data, and, 3) statistical modeling stage to formulate
short- and long-time high-level semantics for application and
service development. Additionally, suitable metadata is defined
to ensure resource efficient communication between the in-
telligent acoustic sensor and the service layer within the IoT
network. A general overview of the proposed approach is given
in Figure 3. The system is highly adaptable due to modular
structure in each stage, fully automated and non-obtrusive.
It respects privacy issues and does not store any contextual
information at any point of time, which leads to higher end-
user acceptance e.g. than video surveillance.

B. Preprocessing

An audio signal recorded by a microphone in real-world
environment is considered to be composed of background
sounds and target acoustic signals [11]. Usually, only the
latter ones are of interest and should be focused on to keep
computation time and consequently, energy consumption, of
the IoT devices low - and therefore, have to be separated
from the background sound in a pre-processing stage. In
[12], multiple voice activity recognition (VAD) algorithms are
investigated according to their suitability for various applica-
tions while taking parameters like computational complexity
and performance into account. Within the EAR-IT use cases,
a high temporal resolution to meet the event characteristics
while having the possibility to respect for privacy related
issues and low computational complexity of the VADs is
desired. Furthermore, denoising functionality [15], foreground-
background separation [12], filtering, channel selection and
localization algorithms [16]- [18] may be part of the pre-
processing stage with the goal to provide a high-quality
audio signal representation to the consecutive acoustic event
detection stage.

C. Acoustic Event Detection

The acoustic event detection is composed of three main
steps, namely audio feature extraction, model development and
training using a machine learning algorithm and the actual
detection of acoustic events. Extracting acoustic event char-
acteristics and features is the first step of most classification
systems. Features may be related to the main dimensions
of audio characteristics including time, spectral distribution,
energy, modulation and other psychoacoustic measures. The

audio files themselves cannot be used as direct input for
machine-based classification, because they, besides their high
dimensionality, are covered with redundancy which first needs
to be removed. Therefore, extracted features should clearly re-
flect the mentioned characteristics of an acoustic event, should
ideally have unique appearance for every event class and
should be highly correlated with the same features extracted
from other event class members. Additionally, the number
of features representing one data item should be minimal
in order to reduce the computational complexity. For audio
feature extraction, we refer to [13] for a list of commonly
used audio descriptors. Once significant features have been
extracted, any classification scheme may be used to map
features to a certain class of acoustic events. Nowadays, audio
feature representations are used that are inspired by the human
auditory system to account for e.g. non-linearities in frequency
and loudness perception instead of relying on plain linear
physical measures. It was shown in the past that acoustic event
detectors can benefit from this transformation, as shown in [6],
[8]- [9] and [14]. Various machine learning algorithms and
approaches for - but not limited to - acoustic event detection
and classification are available in the literature. In general, two
different classes of classification approaches are distinguished:

1) Unsupervised Classification: The data is clustered in a
non-supervised way. The classification scheme emerges from
the data based on objective similarity measures. An audio file
is represented by a set of features, and a similarity measure is
used to compare files. Unsupervised clustering algorithms take
advantage of the similarity measure to organize a set of events
into clusters. The following cluster algorithms are mentioned
in the literature: K-Means, Agglomerative Hierarchical Clus-
tering, Self-Organizing Map (SOM), and Growing Hierarchical
SOM (GHSOM).

2) Supervised Classification: This approach has been most
widely researched. It is based on manually labeled acoustic
events, onto which individual events are automatically mapped
by applying machine learning algorithms. In an initial training
phase, the system is trained with some manually labeled data.
Then, the trained system is used to classify unlabeled data. The
classifier attempts to automatically form relationships between
the features of the training set and the related categories. Under
the assumption that the training data set is representative for
every unknown data item to be classified, every unknown
data item is classified correctly. Typical supervised machine-
learning algorithms that have been used in the context of
acoustic event detection are: K-Nearest Neighbour, Gaussian
Mixture Models (GMM), Hidden Markov Models (HMM),
Neural Networks, Linear Discriminate Analysis, Quadratic
Discriminate Analysis and Support Vector Machines.

D. Statistical Modeling

In cases where a single acoustic event does not describe
a situation sufficiently, post-processing of the acoustic event
detection output, i.e. a label for the audio snippet under
investigation at a given point in time, and fusion with in-
formation from other points in time becomes necessary. In
[12], a concept to model an emergency from its temporal
characteristics is described. Both, short-term characteristics for
instantaneous emergency classification and long-term charac-
teristics for monitoring the progression of events over a longer
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Fig. 3. Functional overview of an APU

period of time are covered by this concept. The model reliably
identifies deviances between a set of parameters for an actual
time interval based on the knowledge gained from previous
time intervals.

E. Metadata

Since the test-beds in EAR-IT have a limited bandwidth in
terms of data transmission, we defined a metadata-container
instead of transmitting raw audio material. The introduction
of the metadata not only heavily reduces the payload of
the network, but also allows for the generation of suitable
information locally that will later on be used in an application
modeling environment, i.e. a service platform. In general, the
size of the metadata-container will be considerably smaller
compared to raw audio material. The latter will remain in
the acoustic sensing unit and will be gathered manually dur-
ing the training period of the acoustic event detectors. The
metadata mainly consists of integer numbers, Booleans and
strings. Retransmission/refresh-time of this data towards the
application layer of the network depends on the use case
but is likely to be irregular. With other words, emergencies
should be notified immediately, otherwise notification can be
done differentially. Of course, continuous/regular update of
the metadata might become necessary for applications such
as data visualization. Tests with the network are considered
to determine how much data can be send at once and at
which frequency such that already running application and
services are not harmed. Within EAR-IT all the metadata is
generated locally by individual acoustic sensing units. Hence,
synchronization is crucial to make use of the data depending
on the application. A timestamp should be provided by a
global master clock in the network (the individual acoustic
sensing units have their own clocks) in conjunction with jitter
and delay measurements within the network. If this delay is
considerably constant over time, it becomes easy to take it
into account for timestamp correction. In the following, a list
of potentially suitable metadata is given that will be used over
the course of the project, namely: 1) Acoustic Sensing Unit ID
as a global unique identifier, 2) Position/Location of the sensor
to create self-awareness, 3) A globally valid time-stamp for
data synchronization on an application level, 4) Sensor ID if
multiple sensors are connected to a unit, 5) Status information
about the sensing unit, 6) Loudness levels in dB, 7) Sound
direction, 8) Car density as a quantized measure of the amount
of traffic around a sensing unit, 9) Annotations of events that
have been detected by the acoustic sensing unit. By using a

TLV scheme for encoding metadata, less than 65bytes of data
have to be transmitted within a refresh-interval, hence reducing
the additional payload introduced to an existing IoT network
to a minimum.

V. ENERGY BASED ACOUSTIC SOURCE LOCALIZATION:
EXPERIMENTS AND SIMULATIONS

In the following, recent research, experiments and simula-
tions are presented towards acoustic source localization using
widely distributed sensors. This work is related to the EAR-
IT outdoor use case for emergency vehicle detection in urban
environments. Commonly used acoustic source localization
algorithms based on time differences of arrival or phase
information require temporally well synchronized sensors in
order to provide robust and reliable estimations. However,
these kinds of algorithms cannot be applied when dealing with
widely spread sensors especially in wireless sensor networks
due to unpredictable jitters, network delays and the lack of a
master clock for all components in the network. Hence, energy
based acoustic source localization approaches are favored. In
general, the signal energy measured by an acoustic sensor Ey

i
can be modeled as the acoustic sensor gain weighted sum of
all acoustic source energies taking into account their spatial
relationship to the sensors (see Eq. 1).

Ey
i = gi

N∑

k=1

Ex
k

‖ri − xk‖2
, (1)

Here, gi defines the known acoustic sensor gain, M is the
number of sensors at the known positions ri, i = 1...M , N is
the number of sources at unknown positions xk, k = 1...M and
Ex

k determines the unknown source signal energy at location
xk. In the following, we assume that the energy is measured
over a period of five seconds. In [35] and [36], an energy
based acoustic source localization algorithm for meeting room
scenarios is presented. Unfortunately, the use case and algo-
rithm was too constraint to be applicable to outdoor wireless
distributed sensor networks. In [34], an energy based maximum
likelihood estimation scheme of the acoustic source position is
presented for sensor networks. The algorithm is based on the
implicit estimation of the acoustic source energies at positions
xk by minimizing the cost function

l(Θ) = ‖y −Ha‖2 , (2)
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Fig. 4. Localisation accuracy for a multi-node triangular microphone array,
full grid search

where y = [Ey
1 , E

y
2 , . . . , E

y
M ] is defined as a sensor energy

vector, a = [Ex
1 , E

x
2 , . . . , E

x
N ] defines the source energy vector

and H is the sensor-source distance matrix of size M × N .
As a requirement, the algorithm needs carefully calibrated sen-
sors and a low-complexity minimum, respectively maximum
search algorithm. In the experiment presented here, two search
approaches are investigated: Full grid search (brute force) and
a bounded simplex algorithm.

We investigate a multi-node triangular microphone in a
simulated 10 × 10m room considering both search algo-
rithms to rank them according to localization accuracy under
various acoustic conditions for single source scenarios: a)
clean conditions and b) a reverberant environment (1000ms
reverberation time). The evaluation criteria for the experiment
is the Euclidian Distance between the estimated and true source
position. Brute Force Full grid search is conducted based on a
55cm grid, resulting in approximately 330 search points across
the room, whereas the sources are placed on a grid of 27cm
in order to reduce computation computational complexity.
Obviously, full grid search is computational very expensive
and exceeds acceptable computation time for more than two
source (exponential growth), but usually finds global minima,
this, leads to reliable results. In contrast, a bounded simplex
downhill algorithm is computationally less expensive and can
be limited in its number of iterations. The convergence speed
heavily depends on the initial starting values for the algorithm,
i.e. heuristic and statistic information about potential source
locations, which otherwise would lead to the output of local
minima. Within our simulations, sources are placed on a 24cm
grid across the room. As the initial value for the search a
random point in a 4× 4m location in the middle of the room
is selected. Both search algorithms are able to estimate the
position of the acoustic source reliably and with reasonable
estimation errors as shown in Figure 4 and in Figure 5. Due
to the coarser search grid resolution for the full grid search
compared to the potential source positions, spatial aliasing
occurred. The main difference between both approaches is
the significantly smaller computation time for the bounded
simplex-downhill search algorithm.

Fig. 5. Localisation accuracy for a multi-node triangular microphone array,
bounded simplex-downhill search

Fig. 6. Localisation accuracy in a room with 1000ms for a multi-node
triangular microphone array

In order to investigate the influence of reverberation on the
cost function and on the estimation results, two experiments
with were conducted with 1000ms reverberation time. An
increase of the reverberation time leads to a flattening the
cost function and in the worst case, to an interference with
virtual sound sources and a mismatch between the estimated
and virtual number of sound sources as shown in Figure 6.

In the future, further investigations towards the influence of
sensor noise will be conducted as well as an evaluation of the
selected algorithm combined with the simplex-downhill search
algorithm in real environments. Furthermore, the influence
of varying block lengths depending on the use case will be
investigated. Sensors for siren detection are already deployed,
connection to central processing platform already exists and is
tested (SmartSantander). Training Material gathering for emer-
gency sirens is done and initial models have been developed.
The next step is to record additional training material from
the deployment area and refine the models in order to provide
a robust and reliable trigger signal for the acoustic source
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localization algorithm to track the emergency vehicles.

VI. SUMMARY AND FURTURE WORK

The wto years project started only on October 2012 and
will continue not only to carry out focus research on acoustic
but will gain experience on how such additional intelligence
can be smoothly integrated within large IoT network and
adding new information that combined with other ones can
bring new services. Some challenges will be on information
synchronization, device energy efficiency and overall cost
reduction to bring Acoustic Sensing Technology to current and
unexpected powerful applications.
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